

EMD/C-23/ 2019 /19 September 20th, 2019 Shubhanand Mukesh Head Environment Management

The Member Secretary

Jharkhand State Pollution Control Board T.A. Division Building, HEC Campus, Dhurwa RANCHI - 834004

Subject: Environmental Statement 2018-2019 for Tata Steel Limited – Main Steel Works, Jamshedpur

Dear Sir,

This has reference to the captioned subject. Please find enclosed the **"Environmental Statement"** for Tata Steel Limited— Main Steel Works, Jamshedpur for the year 2018-2019 duly filled in the prescribed format is enclosed for your kind consideration.

Thanking you

Yours faithfully,

For Tata Steel Limited

Shubhanand Mukesh

Head, Environment Management

Chancer Walcach

Encl: As Above

Copy to: Regional Officer, Jharkhand State Pollution Control Board, Adityapur, Jamshedpur – 831 013

ENVIRONMENTAL STATEMENT FOR THE YEAR 2018-2019

Main Steel Works TATA STEEL LIMITED

Submitted by:
ENVIRONMENTAL MANAGEMENT DEPARTMENT
TATA STEEL LIMITED
JAMSHEDPUR-831001
JHARKHAND

[Form V]

Environmental Statement for the Financial Year ending 31st March 2018

Part A

(i)	Name & address of the owner/occupier of the industry operation or process:	Managing Director- Tata Steel India & Southeast Asia Tata Steel Limited Jamshedpur-831001
(ii)	Industry Code	Jharkhand 3312
(~~)	Industry Code	3312
	Primary STC Code:	Metallurgical industry
	Secondary SIC Code	Integrated Iron & Steel Industry
(iii)	Production Capacity	10.22 Million Tons Crude Steel Production during 2018-19 (Major units are: RMM, Blast Furnaces, Coke ovens, Sinter Plants, Pellet Plant, LD Shops, HSM, CRM, WRM, MM, NBM, CAPL*, Captive Power Plant and Utilities)
		*CAPL is being owned and operated by M/s Jamshedpur Continuous Annealing and Processing Company (JCAPCPL), a joint venture formed by Tata Steel and Nippon Steel and Sumitomo Metal Corporation (NSSMC) to manufacture and market high-quality, automotive-grade continuous annealed products inside premises of Jamshedpur steel works.
(iv)	Year of Establishment	1907
(v)	Date of last Environment Statement submitted	September 26, 2018 vide letter no. EMD/C-23/377/18

Part B

WATER & RAW MATERIAL CONSUMPTION

i) Water Consumption (m³/day)

Water Consumption	During the previous Financial Year (2017-18)	During the current Financial year (2018-19)
Industrial Consumption (inside Works as Makeup water)	1,00,464	91,540
Domestic Consumption (Inside Works as drinking water)	11,486	10,680

Name of the product	Process water consumpti (m ³ /tcs)	on/unit of product output
Crude Steel	During the previous Financial Year (2017-18)	During the current Financial year(2018-19)
Specific Water Consumption	3.68	3.27

ii) Raw Material Consumption (Works):

Name of raw material	Name of products	Consumption of raw output (kg/ton	
		During the previous Financial Year (2017-18)	During the current Financial year (2018-19)
Iron Ore		1734.4	1662.8
Coking Coal		418	612.4
Lime Stone		313.1	301.7
Non-Coking Coal		207.3	210.2
Dolomite & Pyroxenite		103.1	105.0
Purchase Pellet		10.6	34.8
Purchase Coke	Crude	(4)	-
Middling Coal	Steel	0.5	0.4
Quartzite and Other materials		6.69	7.8
Zinc & Zinc Alloys		4.1	1.0
Ferro Manganese - High Carbon Lumps		1.3	0.9
Ferro Manganese - Medium Carbon		1.3	1.5

Part C
Pollution Discharged to Environment / Unit of Output
(Parameter As Specified in the Consent Issued)

121	XX71
(1)	Works:

Pollutants	pollu disch (mass	tity of tants arged s/day)	pollutant discharge (mass / v	ed	% of variation from prescribed standards
(a) Water	2017-18	2018-19	2017- 18	2018-19	2018-19
TSS	1.210	1.069	27.37	36.24	-
COD	1.171	2.046	35.52	94.83	-
Ammonia as N	0.226	0.201	3.88	15.88	-0
BOD	0.491	0.281	14.24	12.3	-
Oil & grease	0.036	0.074	0.78	2.75	-0
Phenols	0.004	0.005	0.09	0.21	
Cyanide as CN-	0.002	0.003	0.05	0.15	-
(b) Air	2017-18	2018-19	2017- 18	2018-19	2018-19
	(Tons	s/day)	(mg	/Nm ³)	
PM	11.04	10.35	24.1	19.9	-
SO_2	20.44	18.02	108.7	106.4	
NOx	21.43	19.72	127.1	114.7	-

(c) Effluent Quality (2018-19)

Downwator	UoM	Norms	Susun	garia l	Drain	HS	SM Dra	in
Parameter	COIM	MOLIUS	Max	Min	Avg	Max	Min	Avg
Ammoniacal Nitrogen (as N)	mg/L	50	45.30	0.90	9.84	43.50	0.00	7.72
Free Cyanide (as CN-)	mg/L	0.2	0.20	0.08	0.15	0.19	0.01	0.12
Phenolic compounds (as C_6H_5OH)	mg/L	1	0.82	0.01	0.23	0.79	0.01	0.23
Oil & Grease	mg/L	10	8.80	1.00	3.26	9.60	0.10	3.24
Total Suspended solids	mg/L	100	98	7	51	97	10	39
Chemical Oxygen Demand, COD	mg/L	250	241	16	90	218	0	83
Biological Oxygen Demand, BOD	mg/L	30	30	3	11	27	3	11
рН	-	6.0- 8.5	8.50	6.50	7.97	8.50	6.70	8.08
Parameter	UoM	Norms	Jugs	alai D	rain	BOT P	lant T	reated
rarameter	UOIM		Max	Min	Avg	Max	Min	Avg
Ammoniacal Nitrogen (as N)	mg/L	50	NT	NT	NT	49.40	0.20	30.07
Free Cyanide (as CN-)	mg/L	0.2	NT	NT	NT	0.20	0.05	0.17
Phenolic compounds (as C ₆ H ₅ OH)	mg/L	1	NT	NT	NT	0.61	0.01	0.20
Oil & Grease	mg/L	10	6.00	0.10	1.88	9.60	0.20	3.57
Total Suspended solids	mg/L	100	69	5	20	98	15	59
Chemical Oxygen Demand, COD	mg/L	250	216	10	61	249	64	198
Biological Oxygen Demand, BOD	mg/L	30	29	3	11	29	6	18
pH	n=	6.0- 8.5	8.50	6.40	7.75	8.50	6.40	7.58
Parameter	UoM	Norms	1,000,000,000	n Man Drain	dir	Ga	ıram N	ala
			Max	Min	Avg	Max	Min	Avg
Ammonical Nitrogen (as N)	mg/L	50				NT	NT	NT
Free Cyanide (as CN-)	mg/L	0.2				NT	NT	NT
Phenolic compounds (as C ₆ H ₅ OH)	mg/L	1				0.71	0.08	0.20
Oil & Grease	mg/L	10	Ach	ieved 2	7ero	9.20	0.20	1.82
Total Suspended solids	mg/L	100	The second secon	nt Disc		65	2	11
Chemical Oxygen Demand, COD	mg/L	250	Linue	110 1010	marge	210	4	42
Biological Oxygen Demand, BOD	mg/L	30				29	3	10
рН	-	6.0- 8.5				8.50	6.56	8.15

(d) Ambient Air Quality (2018-19)

Parameter	UoM	Norm	WEST PLANT AID STATION		FIRST (WPFA)	COLD	COLD ROLL MILL (CRM)	MILL	POWER HOUSE #	R HOUS	ස #	POWE	POWER HOUSE GATE	E # 6
			Max.	Min.	Avge	Max.	Min.	Avge	Max.	Min.	Avge	Max.	Min.	Avge
Particulate Matter, PM ₁₀	µg/m³	100	203.05	95.2	124.6	214.16	97.1	127.0	2191.26	98.3	132.9	176.17	106.3	130.3
Particulate Matter, PM _{2.5}	µg/m³	09	69.34	53.6	61.4	69.50	57.1	61.8	71.68	56.4	62.3	68.64	55.4	63.1
Sulphur Dioxide (SO ₂)	µg/m³	80	25.27	12.3	18.7	28.13	11.7	18.8	25.53	11.3	17.5	30.07	11.5	17.7
Nitrogen Dioxide, (NO _x)	µg/m³	80	39.63	15.5	25.8	40.10	15.1	24.8	35.10	15.0	23.3	38.40	15.3	23.4
Carbon Monoxide(CO)	µg/m³	2000	0.58	0.3	0.5	0.76	0.5	9.0	0.74	4.0	0.5	0.68	4.0	0.5
Ammonia (NH3)	µg/m³	400	69.33	36.3	53.2	65.00	21.7	51.2	63.67	19.0	46.8	66.33	26.7	48.5
Ozone (03)	µg/m³	100	33.50	19.5	26.5	33.50	20.5	27.9	42.00	19.0	28.3	31.00	20.0	26.2
Lead (Pb)	µg/m³	1.0	0.39	0.3	0.3	0.61	0.3	0.4	0.44	0.2	0.3	0.37	0.2	0.3
Arsenic (As)	ng/m³	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Page **6** of **13**

Tata Steel Limited, Main Steel Works, Jamshedpur

Nickel (Ni) ng/m^3 20.0	ng/m³	20.0	0.50	0.2	0.3	0.76	0.4	0.5	0.56	0.3	0.4	0.56	0.2	0.3
Benzene (C ₆ H ₆)	ug/m³	5.0	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1
Benzo alpha Pyrene (BaP)	ıg/m³	1.0	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Part D

Hazardous Waste

[As Specified under Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016]

Hagandaya Wasta Tatal On the (T)			
Hazardous Waste	Total Qua	ntity (Tonnes)	
	During the previous Financial Year (2017-18)	During the current Financial year (2018-19)	
(a) From Process			
Waste Oil	2133	2543	
Tar Sludge	6838	3435	
Zinc dust Ash	247	39.98	
Iron Oxide	4367	6792	
Iron Hydroxide Sludge	362	345	
Chrome Sludge	1.6	1.4	
Waste Grease	182	117	
(b) From Pollution	Control Facilities		
GCP Sludge	150112	157415	
BOT Sludge	774	821	

Part E

Solid Waste

Total Quantity Generated

Name of the Waste	Total Quantity Generated (t	onnes)
(a) From	During the previous	During the current
Process	Financial Year (2017-18)	Financial year (2018-19)
BF Slag	38,95,992	41,24,476
LD Slag	15,24,908	17,42,810
Mill Scale & Mill Sludge	98761	102652
Lime Fines	197292	2,12,283
BF Sludge	150112	157415
Dolo & Kiln Dust	18014	18,315
Bottom Ash	229.1	322
(b) From Pollutio	n Control Equipment	•
Process Dust	122367	157125
LD Sludge	359703	351551

Page 8 of 13

Tata Steel Limited, Main Steel Works, Jamshedpur

Fly Ash	2291	1289

(c)(1). Total Quantity Recycled/ Reutilized within the unit

Nan Was		Total Quantity Recycled/ Re utilized within the unit (tonnes)			
		During the previous Financial	cial During the curren		
		Year (2017-18)	Financial	Financial year (2018-19)	
LD S	Slag	806156		17,53,088*	
Mill	Scale	94405		99,855	
Lime Fines		197323		2,09,706	
Dolo	& Kiln Dust	17050	18,431		
Flue Dust		120099	1,12		
LD Sludge		395176	3,61,955		
Mill Sludge		2344	2,968		
*	Metalics	Metalics		4,28,867	
	RMBB		10.12 %	1,77,478	
	Other Interna	al	4.30 %	75,459	
	External(Brid	k Making,Clinker /		10,71,284	
	cement,Hard	stand, Roads – Aggreto)	61.11 %		
		Total	100 %	17,53,088	

(c)(2) Total Quantity Sold

Name of the Waste	Total Quantity Sold (tonnes)		
	During the previous Financial Year (2017-18)	During the current Financial year (2018-19)	
BF Slag	3880652	4072885	
Lime Fines	14191	12,075	
BF Sludge 88248		93741	

(c)(3) Total Quantity Disposed

Name of the Waste	Total Quantity Disposed (tonnes)	
	During the previous Financial Year (2017-18)	During the current Financial year (2018-19)
BF Slag	12	-
Fly Ash + Bottom Ash	35626	1612
LD Slag	458000	547363

Part F

Chemical Composition of majority of waste as produced in process of Tata Steel's operation is given below:

Name of Wastes	Chemical Composition (%)	Disposal Method	
Coal Tar C - 90-95; Moisture - 1.3 Sludge S - 0.3-0.7; CV - 8800 KCal/kg Sp. Gr 1.2; Ash - 0.04-0.05		Mixed with coal & used in Coke Plant	
BOD Sludge VM - 50; Ash - 26 Moist 20; CV - 5800 KCal/kg		Mixed with coal & used in Coke Plant	
B F Slag	CaO - 32; MgO - 9 SiO ₂ - 34.5; MnO - 0.25 P ₂ O ₃ - Nil; Al ₂ O ₃ - 1.2 S - 1.4; TiO ₂ - 1.2; FeO - 0.33	Sold to cement plantUsed in construction	
B F Sludge	Fe(T) - 33.65; MnO - 0.14 CaO - 3.45; Al ₂ O ₃ - 3.64 SiO ₂ - 6.40; S - 0.230; P ₂ O ₅ - 0.307 TiO ₂ - 0.30; MgO - 1.40 Alkali - 0.5 to 0.7; C - 21-24	Sold to Outside Parties	
L D Slag	Fe(T) - 18-25; MgO - 1-2 CaO - 45-55; MnO - 0.5-1.0 SiO ₂ - 10-12; Al ₂ O ₃ - 0.8-1.0 P ₂ O ₅ - 3.5-4.0; S - 0.2 TiO ₂ - 0.8-1; Alkali - 0.18	 Stored at Galudih for Processing Used in construction Used in Sinter Plant 	
L D Sludge Fe(T) - 55 to 60; MgO - <1.0 CaO - 10-15; MnO - <0.5 SiO ₂ - 1.5-2.0; Al ₂ O ₃ - <0.5 P ₂ O ₅ - 0.29; TiO ₂ - <0.1		Land FillingUsed in Sinter Plant	
Mill Scale	Fe(T) - 72-75; MnO - <0.5 SiO ₂ - <0.5; Al ₂ O ₃ - <0.5 MgO - 0.1; Oil - 10-12	Used in Sinter Plant	
$ \begin{array}{c} \text{Mill Sludge} \\ \hline \text{Fe(T)} - 42.76; \text{MgO} - 0.35 \\ \text{CaO} - 0.65; \text{MnO} - 0.27 \\ \text{SiO}_2 - 1.12; \text{Al}_2\text{O}_3 - 0.50 \\ \text{P}_2\text{O}_5 - 0.089; \text{TiO}_2 - 0.03 \\ \text{Cr}_2\text{O}_3 - 0.03; \text{Oil} - 10\text{-}12 \\ \hline \end{array} $		Used in Sinter Plant	
Lime Fines	CaO - 66.5; Al ₂ O ₃ - 0.26 SiO ₂ - 1.53; MgO - 5.68	SoldUsed in Sinter Plant	
Fly & Bottom Ash	$Fe(T) - 2.1-3.5; MgO - 0.20-0.60 \\ CaO - 0.85-1.2; Al2O3 - 21.9-24.3 \\ SiO2 - 44.9-47.8; TiO2 - 1.49 \\ P2O5 - 0.309-0.663 \\ Alkali - 1.45-1.55; C - 12-20$	Disposed in ash pond	

Part G

Sl. No.	Pollution abatement Measures taken in 2018-19	Impact on conservation of natural resources & others
1	Effluent recycling facility .	Reduction of specific water consumption to be continued
2	Green Belt Development	We have planted approx. 12697 nos. saplings during April 2018 to March 2019 inside the works and Jugsalai Muck Dump area. Every year plantation done in available space. The following plant species are being planted: Ficus, karanj, Cicilipinia, Palm, Ashoka, Mahogany, Caesalpinia Arjun, Sita Ashok, Bakul, Spathodia, Kanchan, Jural, Tabulia, Sissam, Termanelia Sp., Arica palm, foxtail palm, Tecoma, Kannel, Tababia, Ghandhraj, calendra, Tagar, Hemelia, Kamani, Karbi, Calendra etc.

Details of Plantation (nos.) done during April 2018 - March 2019

Month	Plantation in Town and JMD	Plantation in Works	Species
Apr-18	13	510	Karanj, Mahogany, Tabbia, Gulmohar
May-18	363	508	Karanj, Mahogany, Tabbia, Karbi.
Jun-18	868	0	Sema robagloca, Sita Asoka, Mahogany, Kanner, Ashoka
Jul-18	1257	1526	Mahogany, Tababia, Ticoma, Bottel palm, Cicilipinia, Harsingar, calendra, Karbi.
Aug-18	1044	512	Kanchan, Calendra, Ashoka, Karbi, Hemelia, Ticoma, Aricapalm, Palm
Sep-18	1006	510	Kanchan, Ashoka, Karbi, Hemelia, Bixa, Ticoma, Cicilipinia.
Oct-18	822	425	Mahogany, Tababia, Ticoma, Bottel palm, Cicilipinia, Harsingar, calendra ,Kanchan, Ashoka, Karbi, Hemelia, Bixa, Ticoma, Cicilipinia.

Total	7,019	5678	Grand Total= 12697/-
Mar-19	323	400	Mahogany, Tababia, Ticoma, Bottel palm, Cicilipinia, Harsingar, calendra, Karbi
Feb-19	656	325	Sema robagloca, Sita Asoka, Mahogany, Kanner, Ashoka
Jan-19	297	320	Karanj, Mahogany, Tabbia, Karbi.
Dec-18	60	216	Karanj, Mahogany, Tabbia, Karbi.
Nov-18	310	426	Sema robagloca, Sita Asoka, Mahogany, Kanner, Ashoka

Part H

Additional Measures Investment Proposal of Environmental Protection Including Abatement of Pollution

- Upgradation of the existing pollution control equipment to bring down dust level
- New pollution control equipment is with more stringent design emission value
- Improvement in water recycling facility for reducing the waste water discharge
- Commissioning of Central (Integrated) Effluent Treatment Plant for effluent treatment

Part I

Any other particulars for improving the quality of environment

Clean technologies to be implemented	Current Status
Energy recovery of top Blast Furnace (BF) gas	TRT has been commissioned in G, H & I Blast Furnace.
De-dusting of Cast House at tap holes, runners, skimmers, ladle and charging points.	De-dusting facility in the cast house has been provided in Sinter Plant, G Blast Furnace.
fly ash transportation back to the abandoned mines, to fill up the	None of our mines are abandoned so far. However, all the coal-fired boilers in Steel Works have been converted to gas firing. Coal will be fired only in emergency in one Boiler from where

wagons while they return back to the mines and its implementation.	limited quantity of ash is being disposed in slurry form in captive ash pond.
Processing of the waste containing flux & ferrous wastes through waste recycling plant.	We have a metal recovery and slag processing plant for the same and such material is used in iron and steel making processes.
Implement rain water harvesting	Rainwater harvesting is in practice inside the Steel Works. Surface run-off is collected in cooling ponds/ catchments and pick up of fresh water from river is reduced during rainy seasons. Rainwater Harvesting has been installed in 38 locations (Steelenium Hall, SHE, MPDS, LD 3, new bar mill ECR, R&D and ITS Building) within Works.
Coke Dry Quenching at Coke Oven Battery 10 & 11	Coke Dry quenching (CDQ) facility is commissioned in the new Coke Oven Battery #10 and 11. The project is completed in FY'19.