

To, The Member Secretary, Jharkhand State Pollution Control Board, T.A. Bhawan, H.E.C. Campus, Dhurwa, Ranchi-834004 Jharkhand

Ref. No. - JMB/ENV/ESSA/05/ 896 /2020

September 28th, 2020

Sub: Annual Environment Statement in Form V for the FY-20.

Dear Sir,

We are enclosing herewith Annual Environment Statement in Form-V for the FY-20 in respect of Jamadoba Coal Washery of M/s Tata Steel Limited, Jharia Division for your kind perusal.

Kindly acknowledge the receipt of the same.

Thanking you,

Yours faithfully, For Tata Steel Limited

Head (Manning)

Regional Officer, Jharkhand State Pollution Control Board, HIG.-1 Sardar Patel Nagar, CC: Housing Colony, Hirapur, Dhanbad (Jharkhand).

爾

Environmental Statement for the financial year ending the 31st March -2020 Jamadoba Coal Washery

PART - A

1. Name and address of the owner/ occupier of the:	Jamadoba Coal Washery
industry/ operation or process	
Head :	Mr. Amit Ranjan
	Head (Jamadoba Coal Washery)
	Tata Steel Ltd., P.O Jamadoba
	Dist Dhanbad, Jharkhand-828112
Nominated Owner :	Mr. T.V.Narendran
1,0000000000000000000000000000000000000	CEO&MD, Tata Steel Ltd
	Jamshedpur, Dist- East Singhbhum
	Jharkhand – 831 001
2.Industry category: Primary (STC Code) Secondary	
(STC Code)	
3. Production Capacity – Units	2.0 MTPA Clean coal
4. Year of Establishment	1952
5.Date of the last environmental statement submitted	23 rd September 2019
	(Vide Letter
X	No.JMB/ENV/ESSA/05/526/2019)

PART - B

Water and Raw Material Consumption

1. Water Consumption M³ / day.

	Water consumption in 2018-2019	onsumption in 2018-2019 Water consumption in 2019-20			
Process	586.94 M ³ / day	$512.40 \text{ M}^3 / \text{day}$			
Cooling	Not Applicable	Not Applicable			
Domestic*	$1 \text{ M}^3 / \text{day}$	1 M ³ / day			

^{*}The domestic water consumption in colonies has been considered in Jamadoba Colliery.

Sl. No	Name of the products	Process water consumption per unit of product output.		
		During the previous financial year 2018-2019 During the current financi year 2019-2020		
1.	Clean Coal	0.38 M ³ /Ton	0.41 M ³ /Ton	

Environmental Statement for the financial year ending the 31st March -2020 Jamadoba Coal Washery

2. Raw Material Consumption

Sl. No	Name of the Raw	Name of the	Raw Materials consumption per unit production output.		
	Material	product	During the previous financial year 2018-2019	During the current financial year 2019-2020	
1.	Raw Coal	G1 G1	1.78 trc/tcc	1.94 trc/tcc	
2.	Magnetite	Clean Coal	0.55 kg/ton	1.13 kg/ton	

^{*}Industries may use codes if disclosing details of raw materials would violate contractual obligation, otherwise all industries have to name the raw materials used.

 $\frac{PART-C}{Pollution\ discharged\ to\ environment\ /\ unit\ of\ output.}$

(Parameter as prescribed in the consent issued)

raran	arameter as prescribed in the consent issued)									
SI.	Pollution	Quantity o	f po	llutants	Cor	ncentratio	on	of	Percentage of variation	
No		discharged (mass/ day) pollutants in discharges			from prescribed					
		(Mass/Volume)			standard with reason.					
A.	AIR	PM ₁₀ Level	PM ₂	.5 Level	SO	2 Level:	N	O2 Level:		
		: 24 Hourly	: 24	Hourly	24	Hourly	24	4 Hourly	Ambient air quality is	
		Limit-	L	imit-	I	_imit-		Limit-	being measured and all	
		100μg/m ³	60	μg/m³	80	$\mu g/m^3$	8	30μg/m ³	values are within limits	
		1.0							as per NAAQS, 2009.	
		84.26	4	6.19		11.35		10.82		
В.	WATER	Zero water dis	charge	(Closed	wate	r circuit s	vste	m) The		
ъ.	WAIER	analysis of wa								
		Paramete		Resul		Measur		Limit		
		Taramete	•	Management of the Control of the Con	ment		Biiii			
				0.0		рН	\neg	5.5-9.0		
		рН		8.0						
		Total Suspend	led	29.5		mg/ltr		100		
		Solid		29.3				***	All values are within	
		Total Dissolve	ed	823.9)	mg/ltr		2100	limits.	
		Solid		623.5	,					
		Biological Ox	ygen	3.9		mg/ltr		30		
		Demand		3.9						
		Chemical Oxy	gen	42.5		mg/ltr		250		
		Demand		42.3						
		Oil & Grease		3.7		mg/ltr		10		

The washery does not have any single point source of air pollution. Hence, quantitative estimation of air pollutants discharged in Kg/day cannot be ascertained.

Environmental Statement for the financial year ending the 31st March -2020 Jamadoba Coal Washery

PART - D

Hazardous Wastes

(as specified under The Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016)

SI	Hazardous Waste	Total Quantity				
No		During the previous financial year 2018-2019	During the current financial year 2019-2020			
1.	From process Used Oil Lead Acid Battery	400 Litres Nil	3617 Litres Nil			
2.	From pollution control facility	-	_			

PART – E Solid Wastes

SI	Solid Wastes	Total Quantity			
No		During the previous financial year 2018-2019	During the current financial year 2019-2020		
1.	From process				
	a. Tailings	177857 Ton	142002 Ton		
	b. Scrap materials	80.59 Ton	103.38 Ton		
2.	Quantity recycled or	All tailings sold to	All tailings sold to		
	reutilized within the	institutionalized customers	institutionalized customers		
	unit/sold/disposed	and scrap sold to dealers	and scrap sold to dealers		

PART - F

Please specify the characterization (in term of composition and quantum) of hazardous as well as solid wastes and indicate disposal practices adopted for both these categories of wastes.

Category of Waste	Characteristics	Quantity	Disposal Practice
Solid Waste 1. Tailings	Coal of -0.5mm size (Solid)	142002 Ton	All tailings sold to institutionalized customers
2. Steel Scrap and other materials	Solid	103.38 Ton	Steel scrap is sold off to vendors.
Hazardous Waste 1. Used Oil	Used Oil (Liquid)	3617 Liter	Disposed off to authorized recycler.
2. Used Battery	Lead Acid Battery(Solid)	Nil	

Environmental Statement for the financial year ending the 31st March -2020 Jamadoba Coal Washery

PART - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production.

Jamadoba coal washery of TATA Steel Ltd. is an ISO 9001:2015, 14001:2015 and 45001 unit, entire coal washing is done by eco-friendly way by using standard practice. Dry-fog system has been already installed to suppress the dust generated at CHP and transfer points of belt conveyor systems and is operated at all times to check fugitive emissions. Adequate fixed-type water sprinklers are also installed at the internal roads of the washery.

S.No.	Environment Management Activity	Expenditure
		in Lakhs
1	Tailings Management System including recycling	84.36
2	Dust suppression system (Dry fog system)	12.21
3	Dust extraction system	4.2
4	Housekeeping measures includes removing spillage, improvement of roads	54.22
5	Mechanical dewatering system	28
6	Fixing of Hosch Scraper and tru track idler for spillage control of conveyor belt	8.0
7	Water spraying on roads for dust control	8.98
8	Horticultural activities including green belt development and regular lawn and garden maintenance	19.23
9	Plantation of saplings and maintenance	5.30
10	Replacement of reciprocating type air compressor by screw compressor for noise reduction	NA
11	Any additional expenditure incurred such as constructing the rainwater harvesting structure	NA
	Total Cost incurred	146.55

Total annual expenditure incurred towards environmental protection is Rs. 224.5 lakhs.

Annual clean coal production of the plant during the year is 4.55 lakh ton.

So the impact of the pollution abatement measures and environment protection shall be 49.34 Rs/ ton of clean coal production.

PART - H

Additional measures/ investment proposals for environmental protection including abatement of pollution, prevention of pollution

Fixed type water spraying system inside washery complex is being operated. Further extend to branch road has been done. Dust extraction system is being commissioned in washery expansion project to control the air pollution. Various programs are arranged such as World Environmental day, Annual Flower Show, Green school project, Tata Volunteering week etc. for public awareness. Also, various

Environmental Statement for the financial year ending the 31st March -2020 Jamadoba Coal Washery

initiatives for biodiversity enhancement in the region have been taken in FY20 such as Bird Niche Nesting, Development of Butterfly garden, Medicinal Garden, Nursery development of native species, etc. Tree plantation will be continued in the leasehold area. Water pumped out of the mine will continue to be used in washery other than use in stowing. One ETP has been commissioned at cost of Rs.15 lakh for canteen waste water treatment. Also, for the purpose of sewage water treatment of the colony, one STP of capacity 50 KLD has been commissioned at the cost of Rs.65 lakh.

PART-I

Any other particulars for improving the quality of environment

- 1. We are providing safe drinking water from our water treatment plant & MADA to our employees.
- 2. We are regularly sprinkling water in an around the units, to suppress dust.
- 3. We provide dust mask to our employees to prevent exposure to dust.
- 4. Our welfare department arranges to clean the domestic garbage from our colonies to provide better environment.
- 5. Regular monitoring of Air Quality & mine water analysis by our separate environment management cell.
- 6. We have already done the tree plantation job and this is a continuous process in company leasehold areas.
- 7. Regular thrust on Environment awareness conducting training classes at P.T.I., Jamadoba.
- 8. We are an IMS certified unit (ISO 9001:2015, 14001:2015 and 45001:2018 certified).

Name of Unit - Jamadoba Coal Washery

Head, Jamadoba Coal Washery TATA STEEL LIMITED