

By E-Mail

Ref.No.: MGM/P&E/345/20

Date: 28/09/2020

To
The Member Secretary,
Odisha State Pollution Control Board,
Paribesh Bhawan,
A/118, Nilakantha Nagar,
Bhubaneswar, 751012

Subject: Submission of Annual Environmental Statement in FORM-V for the year ending 31st March 2020 in respect of Bamebari Iron and Manganese Mine of M/s Tata Steel Ltd.

Reference: Rule-14 under Environmental (Protection) Amendment Rule, 1993 (G.S.R.386,22.04.1993)

Dear Sir,

We are hereby submitting the Annual Environmental Statement in "FORM-V" prescribed under the above referenced statute, for the year ending 31st March 2020 in respect of Bamebari Iron and Manganese Mine of M/s Tata Steel Ltd., At/Po-Bichhakundi, Dist-Keonjhar, Odisha.

This is for your kind information and perusal please. Receipt of the same may please be acknowledged.

Thanking you,
Yours faithfully,
F: TATA STEEL LTD.

Head

Mine & Production Planning Ferro Alloys Mineral Division

Enclousure: Annual Environmental Statement (FORM-V) for the Financial Year ending 31st March 2020 **Copy To:**

- 1) Zonal Office Kolkata, Central Pollution Control Board, South end Conclave, Block 502, 5th and 6th Floors, 1582 Rajdanga Main Road, Kolkata, West Bengal 700107.
- 2) The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Odisha-758001.
- 3) MoEF&CC Eastern Regional Office, A/3, Chandrasekharpur, Bhubaneswar-751023

Environmental Statement in respect of Bamebari Iron & Mn Mine of Tata Steel Limited for year ending 31st March 2020

ENVIRONMENTAL STATEMENT

FORM - V [2019-20]

[Rule-14 under Environmental (Protection) Amendment Rule, 1993] (G.S.R.386,22.04.1993)

Submitted By:

Bamebari Iron & Manganese Mine M/s. Tata Steel Limited

At/Po: Bichhakundi, Via-Joda

District- Keonjhar, Odisha -758 034

FORM V

[See Rule 14 of Environment (Protection) Amendment Rules, 1993]

ENVIRONMENTAL STATEMENT

for the financial year ending the 31st March 2020

PART - A

(i) Name and Address of the Owner / occupier of the industry operation

or process.

Nominated Owner:

Name and Address of the Owner / : BAMEBARI IRON & MANGANESE MINE

Mr. T.V. Narendran

Managing Director, M/s TATA Steel Ltd.

Jamshedpur, Dist- East Singhbhum

Jharkhand - 831 001

Mr. Amit Kumar Dubey,

Agent: Head(Manganese Group of Mines), Joda, FA

& MD, TATA Steel

P.O.: Bichhakundi, Via : Joda Dist : Keonjhar, Orissa – 758 034

(ii) Industry Category : Opencast Mining

(iii) Production Capacity – Units : **83,200 Tonnes per annum** (Manganese

Ore or 0.832 LTPA (as per Environmental

Clearance)

(iv) Year of Establishment : 1938

(v) Date of the last environmental: 26th Sept'2019

statement submitted

PART - B

Water and Raw Material Consumption: Mining is not a manufacturing process thus water is not a raw material essential for production; however, water is used for haul road dust suppression and other support services which are not directly linked with the quantum of production.

(1) Water Consumption m³/day (Av. figures for 2019-20)

Process: 23.85 m³/day (Water sprinkling) (**Total-8707.22m**³)

Cooling : Nil

Domestic : $136.0 \text{ m}^3/\text{day} (\text{Total-49881.11m}^3)$

Name of the Products	Process water consumption	per unit of product output
	During the previous	During the current
	Financial year	Financial year
	(1)	(2)
(1) Manganese Ore	Nil	Nil

Remarks: Manganese Ore is produced by semi mechanized Mining method, which does not involve beneficiation and thus precludes the consumption of water. Unlike manufacturing

Environmental Statement in respect of Bamebari Iron & Mn Mine of Tata Steel Limited for year ending 31st March 2020

processes, production from mining doesn't involve water as raw material for any of the operational activities.

(2) Raw material consumption: Unlike manufacturing processes, mining doesn't involve any such raw materials; However, uses various other resources for ancillary services essential to ensure mining such as Diesel, Electricity and Explosives, etc.

The table below reflects the production and dispatch figures for the last two financial year

	F	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>						
Name of the	Name of	Consumption of raw materials per unit							
raw materials	the product	During the previous	During the current						
		Financial year	Financial year						
		(Year 2018-19)	(Year 2019-20)						
-Nil-	Manganese	Production	Production						
	Ore	79619 MT	92223.000 MT						
		Despatch	Despatch						
		67770.66 MT	83110.96 MT						

Remarks: The ore produced from Mine head is used as raw material to produce ferro manganese. Other essential resources used during the reporting period (2019-20) is as follows: Diesel (336.622KL), Explosive (93000Kg), Electricity (356821Kw-h from grid & 75927Kw-h from DG set). Production figure represents ROM, which is inclusive of product under use and subgrade ore.

PART - C

Pollution discharged to environment / unit of output (Parameter as specified in the Consents issued)

		rooucuj	
Pollution	Quantity of	Concentrations of	Percentage of
	pollutants	Pollutants in	variation from
	discharged	discharges	prescribed
	(mass/day)	(mass/volume)	standards with
			reasons
(a) Water	-Nil-	-Nil-	Not Applicable

There are no direct/indirect source for discharge of effluents/pollutants to the environment. Ground water strata is much below the present pit depth and since mine is operated without intervening with the ground water thus potential source of water getting polluted/contaminated is eliminated. Environmental quality parameters are monitored from time to time to assess the water quality of the nearby streams/nallahs and monsoon runoff from the mining areas. The environmental quality parameters are monitored and reports are submitted to SPCB as well as MoEF&CC along with six monthly compliance reports.

Environmental Statement in respect of Bamebari Iron & Mn Mine of Tata Steel Limited for year ending 31st March 2020

(b) Air	-Nil-	-Nil-	Not Applicable
	There is no such point s	ource of emission	from the mine. Major
	source of air pollutants is	fugitive dust gene	rated mainly due to the
	movement of vehicles in t	the haul roads, dr	illing/blasting activities
	etc, which is fugitive in r	nature and thus h	as not been quantified
	(mass/day). More ever the	e dust generated d	luring mining operation
	is mainly driven by loca	l meteorology an	nd thus attributing the
	ambient air quality and	fugitive dust emis	ssion to specific mine/
	activity will not be rationa	l	
	The environmental qualit	y parameters are	monitored and reports
	are submitted to SPCB as	well as MoEF&CC	along with six monthly
	compliance reports.		
	Abstract of Environment	al Monitoring Re	sult for FY 2019-20 is
	enclosed as Annexure-I.	_	

<u>PART - D</u> (Hazardous Wastes)

[As specified under the Hazardous and Other Waste (Management and Transboundary Movement) Rules, 2016]

Hazardous Wastes	Total Quantity							
	During the previous	During the current						
	Financial year	Financial year						
	<u>Year (2018-19)</u>	<u>Year (2019-20)</u>						
(i) From Process	-	-						
Waste containing Oil	Nil	Nil						
Used Oil (in Ltrs.)	42 Ltrs	200 Ltrs						
Cotton Waste (in Kgs)	Nil	5(approx.)						
Duster (in Nos.)	Nil	Nil						
Filters (in Nos.)	Nil	45(approx.)						
(ii) From pollution control	Nil	Nil						
facilities								

Remark: The quantity indicated reflects that of the quantity generated from the departmental HEMM fleets and is exclusive of the major chunk of generation, managed by the outsourced agencies deployed for mining.

<u>PART - E</u> (Solid Wastes)

(John Wastes)	
Total Q	uantity
During the previous	During the current
Financial year	Financial year
<u>Year (2018-19)</u>	<u>Year (2019-20)</u>
233308MT	221195MT
Nil	Nil
Nil	Nil
Nil 233308 MT	Nil 221195MT
	Total Q During the previous Financial year Year (2018-19) 233308MT Nil Nil

PART - F

(Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes)

- Characterization of Hazardous Waste: The significant source of hazardous waste is Used
 oil (HW-5.1) is mainly Hydrocarbons and consist of lubricants, coolants, transformer oil and
 hydraulic oil. Lead Acetate batteries are also used in HEMM fleet which are mainly of
 automotive fuel cells.
- Overburden being the only form of significant solid waste contains lateritic morrum, shale and quartzite, etc.

Disposal Practice: -

- SOLID WASTES -OB dumps are maintained as per the approved scheme of mine plan where proper terraces and peripheral drains are constructed supported with gabion wall/retention wall to arrest the silt/sediments during monsoon season. Once the slope of the dumps is stabilised then the dumps are reclaimed by plantation of native varieties of forestry saplings.
- ➤ USED OIL -The used oil generated at various sources is collected in leak proof barrels and then is kept on an impervious floor with oil catch pit. It is also ensured that the caps of the barrels remain intact and horizontal. The storage area is properly fenced and caution board displayed. The used oil collected from sites are centrally auctioned to an SPCB authorised/registered recycler for recycling. At present, used oil generated from the departmental HEMM fleet (TSL's fleet of HEMM) are managed by the company through auctioning; however major chunk of generation is due to the contractual operations, managed by outsourced agencies as per applicable norms.
- Provision of impervious pit for collection of oily waste in the workshop premises in addition to the existing practice of collection at specified barrels.

PART - G

(Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production)

- 1. Water spraying on haul Roads and Mine Pits is done regularly to suppress the dust.
- 2. All the haul roads in the mining area are made up of morrum & compacted. Regular repair is being done by dozer & grader after spreading the layer of sweet morrum over it.
- 3. Wet drilling is practices along with controlled blasting followed for minimal dust generation and prevent fly rocks.
- 4. Total plantation for FY 2019-20 for the dump and other available fonts was 10150Nos. of local forestry species such as Gambhari, Neem, Mahaneem, Sisam, Karani, Sal, etc.
- 5. The mine management proactively undertakes various environmental activities for the conservation/protection of environment. The cost incurred towards environmental measures are earmarked in a separate fund center. An abstract on the approximate cost spent towards environmental measures in respect of Bamebari Iron & Manganese Mine is as follows:

S.No.	Environmental Conservation/Protection Measures	Expenditure (Lacs-INR)				
		Proposed	Actual			
1	Afforestation on Dump slopes	1.825	3.0			

Environmental Statement in respect of Bamebari Iron & Mn Mine of Tata Steel Limited for year ending 31st March 2020

2	Construction of retaining wall	0.093	1.20
3	Construction of Garland drain, settling pits with check dam	0.0312	0.40
4	Env. Awarenss	03.0	4.0
5	Environmental monitoring	15.0	15.5
	Total	19.9492	24.1

6. In addition, Tata Steel Rural Development Society also undertakes the peripheral development activities with a large magnitude.

PART - H

(Additional measures / investment proposal for environmental protection, abatement of pollution, prevention of pollution)

- a) Garland drains and toe wall around the OB dumping shall be provided to check and channelize surface run-off.
- b) Plantation of forestry species shall be planted over the inactive waste dump slopes to arrest the airborne dust.
- c) Vetiver Plantation has been done in inactive dump slope.
- d) Green belt has been developed along colony and mining.
- e) Soil Conditioning and treatment practices followed for land reclamation
- f) In-House nursery for development of native varieties of forestry saplings.

PART - I

(Any other for improving the quality of environment)

- 1. With compliance to conditions of Environment Clearance obtained from MoEF, the following monitoring is being done at regular interval.
 - Ground Water Level at nearby bore wells
 - Trace metal in dust fall
 - Ground water quality at lower level
 - Meteorological monitoring
 - Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500.
- 2. Top soils generated during excavation are utilized immediately for nursery development and dump slope plantation.
- 3. Measures taken to control Air Pollution: -
 - Water sprinkling on the haul road,
 - Provision of dust masks to the workmen,
 - Adoption of wet drilling arrangement in the drill machines and
 - Black topped road in the residential colony.
 - Green belt along mining and colony
 - Native sapling and vetiver plantation in inactive dumps.
- 4. Measures taken to control Water Pollution: -
 - Construction of toe wall and garland drain along the dump slope to prevent surface runoff during monsoon.
 - Construction of soak pits for discharge of sanitary sewage.
 - Provision of oil separation pit for effluents coming out of work shop.

Environmental Statement in respect of Bamebari Iron & Mn Mine of Tata Steel Limited for year ending 31st March 2020

- STP for domestic effluent in Bamebari colony.
- 5. Measures taken to control Noise & Ground Vibration: -
 - Thick plantation has been developed around the mines and office building to provide a canopy cover
 - Implementation of advance blasting technique(NONEL) to reduce the blast induced ground vibration and
 - Workmen are provided with ear-muff while working near heavy earth moving machineries.
- 6. Measures taken to control Land Degradation: -
 - Afforestation around the non-active dump for stabilization and
 - Reclamation and rehabilitation of mined out area as per approved Scheme of Mining.
- 7. Surveillance of Occupational Health: Periodical Medical Examination of employees (departmental & contractual) are conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood haematology, blood pressure, detailed cardiovascular assessment, neurological examination etc.

Date: 28/9/2020

8. The mine is certified with ISO-14001:2015 (Environment Management System).

Head

Mine & Production Planning

Ferro Alloys Mineral Division

M/s Tata Steel Limited

(For Bamebari Iron & Manganese Mine)

Annexure-I to Environmental Statement (Form-V) for Bamebari Iron & Manganese Mine for FY 2019-20
ABSTRACT ON ENVIRONMENTAL MONITORING RESULTS
[PERIOD: APRIL 2019 TO MARCH 2020]
MINE-BAMEBARI IRON & MANGANESE MINES M/s TATA Steel Limited
Page 1 of 30

1. SURFACE WATER QUALITY ANALYSIS REPORT SW1: Confluence Point at Kassia Nallah

			Monitoring Period (Apr'19 to March'20)											
Parameters	Unit	Standard	Apr- 19	May- 19	Jun-19	Jul-19	Aug- 19	Sep- 19	Oct-19	Nov- 19	Dec-19	Jan-20	Feb- 20	Mar- 20
Dissolved Oxygen (minimum)	mg/l	4	5.9	5.6	5.5	5.4	5.3	5.1	5.6	5.2	5.6	6.6	6.2	6.2
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Coli form	MPN/ 100 ml	5000	260	220	173	180	120	110	110	100	110	180	210	110
pH Value		6.0-9.0	7.52	7.46	7.57	7.56	7.51	7.46	7.56	7.64	7.48	7.66	7.68	7.6
Colour (max)	Hazen	300	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL
Total Dissolved Solids	mg/l	1500	156	158	157	151	154	148	162	168	160	188	192	180
Copper as Cu (max)	mg/l	1.5	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Iron as Fe (max)	mg/l	0.5	0.58	0.61	0.48	0.39	0.32	0.21	0.36	0.38	0.44	0.41	0.44	0.32
Chloride (max)	mg/l	600	38	33	58	61	61	60	66.8	71.4	71.2	78	80	70
Sulphates (SO ₄) (max)	mg/l	400	4.6	5.1	3.03	3.8	3.2	3.0	3.9	4.2	5.8	5.2	5.6	4.2
Nitrate as NO ₃ (max)	mg/l	50	2.1	2.04	2.53	2.6	2.2	2.1	2.6	3.2	3.2	3.2	3.8	3.2
Fluoride as F (max)	mg/l	1.5	0.028	0.017	0.02	0.021	0.021	0.018	0.019	0.018	0.051	0.026	0.022	0.026
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium as Cd (max)	mg/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Selenium as Se (max)	mg/l	0.05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic as As	mg/l	0.2	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc as Zn(max)	mg/l	15	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexa Chromium as Cr +6	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anionic Detergents (max)	mg/l	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

SW2: Intake Point at Tindharia

on an intense i onit at in	uniun iu													
				Monitoring Period (Apr'19 to March'20)										
Parameters	Unit	Standards	Apr-19	May- 19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar- 20
Dissolved Oxygen (minimum)	mg/l	4	6.2	6.03	6.03	6.1	6.2	5.6	6.6	6.1	6.5	6.8	6.4	6.4
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Coli form	MPN/ 100 ml	5000	320	217	216	110	150	120	170	120	220	210	240	180
pH Value		6.0-9.0	7.61	7.65	7.65	7.61	7.56	7.22	7.64	7.72	7.71	7.74	7.82	7.69
Colour (max)	Hazen	300	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL
Total Dissolved Solids	mg/l	1500	168	174	174	162	160	132	174	174	194	192	210	192

				Monitoring Period (Apr'19 to March'20)										
Parameters	Unit	Standards	Apr-19	May- 19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar- 20
Copper as Cu (max)	mg/l	1.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Iron as Fe (max)	mg/l	0.5	0.62	0.42	0.42	0.36	0.34	0.56	0.38	0.44	0.42	0.44	0.46	0.38
Chloride (max)	mg/l	600	42	51	51	66	63	31	64.6	74.8	76	82	84	74
Sulphates (SO ₄) (max)	mg/l	400	5.8	3.33	3.33	4.2	3.6	5.1	3.2	4.6	4.8	5.6	6.2	5.1
Nitrate as NO ₃ (max)	mg/l	50	3.2	2.60	2.60	3.2	2.8	2.2	2.1	3.6	3.6	3.8	4.2	3.8
Fluoride as F (max)	mg/l	1.5	0.051	0.03	0.03	0.036	0.029	0.018	0.012	0.021	0.019	0.021	0.026	0.022
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium as Cd (max)	mg/l	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Selenium as Se (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic as As	mg/l	0.2	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc as Zn(max)	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexa Chromium as Cr +6	mg/l	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anionic Detergents (max)	mg/l	1.0	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2

2. DRINKING WATER

DW1: Near Canteen

<u> </u>	. Near Canteen									
				MICROBIOLOG	ICAL ANALYSIS	OF WATER AS	PER IS: 10500 - 20	<u>)12</u>		
Sl No.	Test Parameters	Unit	Norms as per 201		Apr-19	May-19	June-19	July-20	Aug-20	Sep-20
1	Total Coli form Organism MPN/100ml	MPN/ 100 ml	Shall not be d any 100m		<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
2	Fecal Coli forms	MPN/ 100 ml			<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
3	E. Coli	MPN/ 100 ml	Shall not be d any 100m		Absent	Absent	Absent	Absent	Absent	Absent
		•	-	CHEMICAL	ANALYSIS OF W	ATER AS PER	IS: 10500 - 2012			
Sl	Test Parameters				Norms	as per IS: 105	00-2012 (Amende	ed on 2015 & 2018)		
No.		Unit	Desirable Limit	Permissible Limit	Apr-19	May-19	June-19	July-20	Aug-20	Sep-20
1	Colour (Unit)	Hazen	5	25	CL	CL	CL	CL	CL	CL
2	Odour		Unobjectiona ble		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Taste		Agreeable		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	pH value (25°C)		6.5 - 8.5	No		7.46	7.52	7.44	7.41	7.60
5	Turbidity	NTU	5	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

		Annexur	e-I to Environ	mental Staten	nent (Form-V)	for Bameba	ri Iron & Manga	nese Mine for FY	2019-20	
6	Total Dissolved Solids	mg/l	500	2000	80	88	94	112	108	96
7	Aluminium (as Al)	mg/l	0.03	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
8	Anionic Detergents (as MBAS)	mg/l	0.2	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
9	Boron (as B)	mg/l	1	5	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01
10	Calcium (as Ca)	mg/l	75	200	19.2	36	43	48	46	50.6
11	Chloride (as Cl)	mg/l	250	1000	21	30	36	46	40	48
12	Copper (asCu)	mg/l	0.05	1.5	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05
13	Fluoride (as F)	mg/l	1	1.5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
14	Residual Free Chlorine	mg/l	0.2(Min.)		ND	ND	ND	ND	ND	ND
15	Iron (as Fe)	mg/l	0.3	1	0.24	0.26	0.28	0.22	0.16	0.12
16	Magnesium (as Mg)	mg/l	30	100	10	18.8	21.2	18.8	16.8	17.2
17	Manganese (as Mn)	Hazen	0.1	0.3	< 0.05	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
18	Mineral Oil		0.01	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
19	Nitrate (as NO ₃)		45	100	1.36	1.42	2.4	2.6	3.2	2.8
20	Phenolic Compounds (as C ₆ H ₅ OH)		0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
21	Selenium (as Se)	NTU	0.01	No Relaxation	< 0.001	<0.001	<0.001	<0.001	<0.001	5.2
22	Sulphate (as SO ₄)	mg/l	200	400	3.8	4.1	4.8	5.4	5.2	5.6
23	Alkalinity (as CaCO3)	mg/l	200	600	42	56	61	60	60	61
24	Total Hardness(as CaCO ₃)	mg/l	300	600	56	64	71	72	72	58
25	Cadmium (as Cd)	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
26	Cyanide (as CN)	mg/l	0.05	No Relaxation	ND	ND	ND	ND	ND	ND
27	Lead (as Pb)	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
28	Mercury (as Hg)	mg/l	0.001	No Relaxation	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
29	Arsenic (as As)	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	mg/l	5	15	< 0.01	< 0.01	< 0.05	< 0.05	<0.05	< 0.05
31	Chromium (as Cr+6)	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05
32	Poly Aromatic Hydrocarbon as PAH	mg/l	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
33	Pesticide	μg/l	Absent	0.001	Absent	Absent	Absent	Absent	Absent	Absent

	MICROBIOLOGICAL ANALYSIS OF WATER AS PER IS: 10500 - 2012											
Sl No.	Test Parameters	Unit	Norms as per 201		Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20		
1	Total Coli form Organism MPN/100ml	MPN/ 100 ml	Shall not be d any 100m	I	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1		
2	Fecal Coli forms	MPN/ 100 ml			<1.1	<1.1	<1.1	<1.1	<1.1	<1.1		
3	E. Coli	MPN/ 100 ml	Shall not be d any 100m	l sample	Absent	Absent	Absent	Absent	Absent	Absent		
	T			CHEMICAL	ANALYSIS OF W	IALYSIS OF WATER AS PER IS: 10500 - 2012						
Sl					Norms	as per IS: 105	00-2012 (Amendo	ed on 2015 & 2018)				
No.	Test Parameters	Unit	Desirable Limit	Permissible Limit	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20		
1	Colour (Unit)	Hazen	5	25	CL	CL	CL	CL	CL	CL		
2	Odour		Unobjectiona ble		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		
3	Taste		Agreeable		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		
4	pH value (25°C)		6.5 - 8.5	No Relaxation	7.48	7.52	7.61	7.66	7.68	7.56		
5	Turbidity	NTU	5	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
6	Total Dissolved Solids	mg/l	500	2000	112.2	118.6	112	118	128	108		
7	Aluminium (as Al)	mg/l	0.03	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
8	Anionic Detergents (as MBAS)	mg/l	0.2	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
9	Boron (as B)	mg/l	1	5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01		
10	Calcium (as Ca)	mg/l	75	200	52	56	51.2	50.8	52.6	50.6		
11	Chloride (as Cl)	mg/l	250	1000	46	52	48.2	51.2	56.8	46		
12	Copper (asCu)	mg/l	0.05	1.5	< 0.02	< 0.02	< 0.05	< 0.05	<0.05	< 0.05		
13	Fluoride (as F)	mg/l	1	1.5	0.016	0.018	< 0.01	< 0.01	<0.01	< 0.01		
14	Residual Free Chlorine	mg/l	0.2(Min.)		ND	ND	ND	ND	ND	ND		
15	Iron (as Fe)	mg/l	0.3	1	0.18	0.22	0.29	0.26	0.34	0.26		
16	Magnesium (as Mg)	mg/l	30	100	18.6	21.4	24.6	28.8	30.6	22.8		
17	Manganese (as Mn)	Hazen	0.1	0.3	< 0.05	< 0.05	< 0.005	< 0.005	<0.005	< 0.005		
18	Mineral Oil		0.01	0.03	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01		
19	Nitrate (as NO ₃)		45	100	1.36	1.42	2.4	2.6	3.2	2.8		
20	Phenolic Compounds (as C ₆ H ₅ OH)		0.001	0.002	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001		

Annexure-I to Environmental Statement (Form-V	for Bamebari Iron & Manganese Mine for FY 2019-20
---	--------	---

21	Selenium (as Se)	NTU	0.01	No Relaxation	5.6	6.1	<0.001	<0.001	<0.001	5.2
22	Sulphate (as SO ₄)	mg/l	200	400	5.4	6.6	5.6	5.8	6.2	5.4
23	Alkalinity (as CaCO3)	mg/l	200	600	62	70	64.8	66.2	70.8	60.8
24	Total Hardness(as CaCO ₃)	mg/l	300	600	78	80	78	72	80	72
25	Cadmium (as Cd)	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
26	Cyanide (as CN)	mg/l	0.05	No Relaxation	ND	ND	ND	ND	ND	ND
27	Lead (as Pb)	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
28	Mercury (as Hg)	mg/l	0.001	No Relaxation	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
29	Arsenic (as As)	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	mg/l	5	15	< 0.01	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05
31	Chromium (as Cr+6)	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.05	<0.05	<0.05	<0.05
32	Poly Aromatic Hydrocarbon as PAH	mg/l	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
33	Pesticide	μg/l	Absent	0.001	Absent	Absent	Absent	Absent	Absent	Absent

3. GROUND WATER GW1: Joribahal Pump House

Sl. No	Parameter	Unit		r IS: 10500:2012 2015 & 2018	Analysis Result	
			Acceptable Limit	Permissible Limit	June-19	Nov-19
1	Colour	Hazen	5	15	CL	CL
2	Odour		Agreeable	Agreeable	Agreeable	Agreeable
3	Taste		Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	NTU	1	5	1.6	1.3
5	pH Value		6.5-8.5	No Relaxation	7.44	7.51
6	Total Hardness (as CaCO ₃)	mg/l	200	600	112.0	110.0
7	Iron (as Fe)	mg/l	1.0	No Relaxation	0.28	0.22
8	Chloride (as Cl)	mg/l	250	1000	40.8	43.2
9	Residual, free Chlorine	mg/l	0.2	1	ND	ND
Desirable	e Characteristics	-				
10	Dissolved Solids	mg/l	500	2000	188.0	196.0

Page 6 of 30

Sl. No	Parameter	Unit	Standards as per Amended on		Analysis Result		
			Acceptable Limit	Permissible Limit	June-19	Nov-19	
11	Calcium (as Ca)	mg/l	75	200	41.2	44.8	
12	Magnesium (as Mg)	mg/l	30	100	19.2	22.8	
13	Copper (as Cu)	mg/l	0.05	1.5	< 0.05	< 0.02	
14	Manganese (as Mn)	mg/l	0.1	0.3	0.018	0.021	
15	Sulphate (as SO ₄)	mg/l	200	400	5.2	5.5	
16	Nitrate (as NO ₃)	mg/l	45	No Relaxation	3.2	3.8	
17	Fluoride (as F)	mg/l	1.0	1.5	0.021	0.018	
18	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	0.001	0.002	< 0.001	< 0.001	
19	Mercury (as Hg)	mg/l	0.001	No Relaxation	< 0.002	< 0.002	
20	Cadmium (as Cd)	mg/l	0.003	No Relaxation	< 0.01	< 0.01	
21	Selenium (as Se)	mg/l	0.01	No Relaxation	< 0.01	< 0.001	
22	Arsenic (as As)	mg/l	0.01	No Relaxation	< 0.01	< 0.004	
23	Cyanide (as CN)	mg/l	0.05	No Relaxation	< 0.01	< 0.01	
24	Lead (as Pb)	mg/l	0.01	No Relaxation	< 0.01	< 0.01	
25	Zinc (as Zn)	mg/l	5	15	3.2	3.4	
26	Anionic Detergents (as MBAS)	mg/l			< 0.2	<0.2	
27	Chromium (as Cr+6)	mg/l	0.5	No Relaxation	< 0.01	< 0.01	
28	Mineral Oil	mg/l	200	600	< 0.01	< 0.01	
29	Alkalinity	mg/l	0.03	0.2	84.0	78.0	
30	Aluminium as(Al)	mg/l	0.5	2.4	<1.0	<1.0	
31	Boron (as B)	mg/l			<0.1	<0.1	
32	Poly Aromatic Hydrocarbon as PAH	mg/l	<0.0001		< 0.0001	< 0.0001	
33	Pesticide	μg/l	Absent		Absent	Absent	

GW2: Nimera Village OW

Sl. No	Parameter	Unit	Standards as per Amended on	r IS: 10500:2012 2015 & 2018	Analysi	s Result
			Acceptable Limit	Acceptable Limit Permissible Limit		Nov-19
Essential	Characteristics					
1	Colour	Hazen	5	15	CL	CL
2	Odour		Agreeable	Agreeable	Agreeable	Agreeable
3	Taste Agreeable Agreeab		Agreeable	Agreeable	Agreeable	
4	Turbidity	NTU	1	5	1.2	1.5
5	pH Value		6.5-8.5	No Relaxation	7.38	7.46
6	Total Hardness (as CaCO ₃)	mg/l	200	600	124.0	128.0
7	Iron (as Fe) mg/l 1.0 No Relaxation		No Relaxation	0.29	0.25	
8	Chloride (as Cl)	mg/l	250 1000		51.2	54.0
9	Residual, free Chlorine	mg/l	0.2	1	ND	ND

Desirable	e Characteristics					
10	Dissolved Solids	mg/l	500	2000	216.0	224.0
11	Calcium (as Ca)	mg/l	75	200	51.6	52.2
12	Magnesium (as Mg)	mg/l	30	100	24.6	24.2
13	Copper (as Cu)	mg/l	0.05	1.5	< 0.05	< 0.02
14	Manganese (as Mn)	mg/l	0.1	0.3	0.021	0.016
15	Sulphate (as SO ₄)	mg/l	200	400	6.1	6.2
16	Nitrate (as NO ₃)	mg/l	45	No Relaxation	2.6	3.1
17	Fluoride (as F)	mg/l	1.0	1.5	0.034	0.028
18	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	0.001	0.002	< 0.001	< 0.001
19	Mercury (as Hg)	mg/l	0.001	No Relaxation	< 0.002	< 0.002
20	Cadmium (as Cd)	mg/l	0.003	No Relaxation	< 0.01	< 0.01
21	Selenium (as Se)	mg/l	0.01	No Relaxation	< 0.001	< 0.001
22	Arsenic (as As)	mg/l	0.01	No Relaxation	<0.004	< 0.004
23	Cyanide (as CN)	mg/l	0.05	No Relaxation	< 0.01	< 0.01
24	Lead (as Pb)	mg/l	0.01	No Relaxation	< 0.01	< 0.01
25	Zinc (as Zn)	mg/l	5	15	3.4	3.6
26	Anionic Detergents (as MBAS)	mg/l	-		<0.2	<0.2
27	Chromium (as Cr+6)	mg/l	0.5	No Relaxation	< 0.01	< 0.01
28	Mineral Oil	mg/l	200	600	< 0.01	<0.01
29	Alkalinity	mg/l	0.03	0.2	86	90.0
30	Aluminium as(Al)	mg/l	0.5	2.4	<1.0	<1.0
31	Boron (as B)	mg/l	-		<0.1	<0.1
32	Poly Aromatic Hydrocarbon as PAH	mg/l	<0.0001		< 0.0001	<0.0001
33	Pesticide	μg/l	Absent		Absent	Absent

4.WASTE WATER

	Sam	pling Loca	tion:STPW-1:STP (Inlet) STPW-2	2: STP (Outlet)					
Sl. No	Parameter	Unit	Standards (In land Surface water)	Apr-1	9	May	-19	Jun-1	9
				STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2
1	Colour & Odour	Hazen	Colorless/Odorless as far as practicable	02 & pungent smell	CL & U/O	<5 & pungent smell	CL & U/O	02 & pungent smell	CL & U/O
2	Suspended Solids	mg/l	100	90	32	92	41	86	38
3	Particulate size of SS		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850	< 850	< 850
4	pH Value		5.5-9.0	6.56	7.41	6.65	7.26	6.81	7.12
5	Temperature	°C	Shall not exceed 5°C above the receiving water temperature	34	34	28	28	25	25
6	Oil & Grease(max)	mg/l	10	3.4	ND	2.9	ND	3.4	ND
7	Total Residual Chlorine	mg/l	1	ND	ND	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	mg/l	50	6.2	0.64	7.1	0.74	7.1	0.94

	Sam	pling Loca	tion:STPW-1:STP (Inlet) STPW-	2: STP (Outlet)					
Sl. No	Parameter	Unit	Standards (In land Surface water)	Apr-1	9	May	-19	Jun-1	19
9	Total Kjeldahl Nitrogen(as TKN)	mg/l	100	12.8	2.6	13.2	3.4	12.9	4.2
10	Free ammonia (as NH ₃)	mg/l	5	ND	ND	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	mg/l	30	36	5.2	32.8	6.1	31.2	6.26
12	Chemical Oxygen Demand as COD	mg/l	250	210	30	188	36	182	40
13	Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
14	Mercury (Hg)	mg/l	0.01	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
15	Lead as Pb(max)	mg/l	0.1	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
16	Cadmium as Cd (max)	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
17	Hexavalent Chromium as Cr+6	mg/l	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	mg/l	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19	Copper as Cu (max)	mg/l	3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
20	Zinc as Zn(max)	mg/l	5	0.64	<0.05	0.66	<0.05	0.62	<0.05
21	Selenium (Se) (max)	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
22	Nickel (Ni)	mg/l	3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
23	Cyanide as CN (max)	mg/l	0.2	ND	ND	ND	ND	ND	ND
24	Fluoride as F (max)	mg/l	2	0.21	0.018	0.26	0.024	0.31	0.029
25	Dissolved Phosphates (P)	mg/l	5	0.32	<0.05	0.44	<0.05	0.28	<0.05
26	Sulphide (S)	mg/l	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
27	Phenolic Compounds as C6H5OH (max)	mg/l	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
28	Bio-assay test		90% survival of fish after 96 hours in 100% effluent	98% survival of fishes	92% survival of fishes	92% survival of fishes	90% survival of fishes	94% survival of fishes	98% survival of fishes
29	Manganese (Mn)	mg/l	2	0.039	<0.005	0.042	<0.005	0.051	<0.005
30	Iron as Fe (max)	mg/l	3	1.54	0.34	1.58	0.48	1.62	0.56
31	Vanadium (V)	mg/l	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
32	Nitrate Nitrogen	mg/l	10	4.1	0.54	4.6	0.68	4.8	0.72

	Samj	oling Loca	tion:STPW-1:STP (Inlet) STPW-2	2: STP (Outlet)					
Sl. No	Parameter	Unit	Standards (In land Surface water)	July-1	9	Aug	19	Sep-19	
				STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2
1	Colour & Odour	Hazen	Colorless/Odorless as far as practicable	04 & pungent smell	CL & U/O	05 & pungent smell	CL & U/O	04 & pungent smell	<5 & U/O
2	Suspended Solids	mg/l	100	189	14	71	26	78	30
3	Particulate size of SS		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850	< 850	< 850
4	pH Value		5.5-9.0	6.54	7.21	6.78	7.21	6.82	7.24

			tion:STPW-1:STP (Inlet) STPW-		0				
Sl. No	Parameter	Unit	Standards (In land Surface water)	July-1	9	Aug	-19	Sep-1	19
5	Temperature	°C	Shall not exceed 5°C above the receiving water temperature	25	25	27	27	26	26
6	Oil & Grease(max)	mg/l	10	ND	ND	3.4	ND	3.1	ND
7	Total Residual Chlorine	mg/l	1	ND	ND	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	mg/l	50	4.1	ND	7.3	1.3	6.8	1.6
9	Total Kjeldahl Nitrogen(as TKN)	mg/l	100	11.6	1.18	8.1	3.7	8.8	3.2
10	Free ammonia (as NH ₃)	mg/l	5	ND	ND	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	mg/l	30	30.6	5.8	23.9	5.6	21.6	6.4
12	Chemical Oxygen Demand as COD	mg/l	250	142	18	143	32	138	30.6
13	Arsenic as As	mg/l	0.2	< 0.004	< 0.004	< 0.004	< 0.004	< 0.001	< 0.001
14	Mercury (Hg)	mg/l	0.01	< 0.002	< 0.002	<0.002	< 0.002	< 0.001	< 0.001
15	Lead as Pb(max)	mg/l	0.1	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16	Cadmium as Cd (max)	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
17	Hexavalent Chromium as Cr+6	mg/l	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	mg/l	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19	Copper as Cu (max)	mg/l	3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
20	Zinc as Zn(max)	mg/l	5	0.28	<0.05	0.53	<0.05	0.031	<0.05
21	Selenium (Se) (max)	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
22	Nickel (Ni)	mg/l	3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
23	Cyanide as CN (max)	mg/l	0.2	ND	ND	ND	ND	ND	ND
24	Fluoride as F (max)	mg/l	2	0.11	0.01	0.34	0.023	0.32	0.011
25	Dissolved Phosphates (P)	mg/l	5	0.28	<0.05	0.37	<0.05	0.41	<0.05
26	Sulphide (S)	mg/l	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
27	Phenolic Compounds as C6H5OH (max)	mg/l	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
28	Bio-assay test		90% survival of fish after 96 hours in 100% effluent	92% survival of fishes	96% survival of fishes	94% survival of fishes	98% survival of fishes	96% survival of fishes	98% survival of fishes
29	Manganese (Mn)	mg/l	2	0.026	<0.005	0.052	<0.005	0.048	<0.005
30	Iron as Fe (max)	mg/l	3	1.21	0.28	1.72	0.61	1.5	0.74
31	Vanadium (V)	mg/l	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
32	Nitrate Nitrogen	mg/l	10	2.12	0.52	5.3	0.79	5.1	0.84

			Location:STPW-1:STP (Inlet) ST						
Sl. No	Parameter	Unit	Standards (In land Surface water)	Oct-1	9	Nov	-19	Dec-1	19
				STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2
1	Colour & Odour	Hazen	Colorless/Odorless as far as practicable	02 & pungent smell	CL & U/O	<5 & pungent smell	CL & U/O	02 & pungent smell	CL & U/O
2	Suspended Solids	mg/l	100	76	30	70	26	96	52
3	Particulate size of SS		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850	< 850	< 850
4	pH Value		5.5-9.0	6.86	7.26	6.94	7.18	6.87	7.19
5	Temperature	°C	Shall not exceed 5°C above the receiving water temperature	26	26	26	26	22	22
6	Oil & Grease(max)	mg/l	10	4.6	ND	4.2	ND	3.6	ND
7	Total Residual Chlorine	mg/l	1	ND	ND	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	mg/l	50	8.1	1.8	7.2	1.6	8.4	1.4
9	Total Kjeldahl Nitrogen(as TKN)	mg/l	100	10.2	4.2	11.4	4.6	13.6	5.6
10	Free ammonia (as NH ₃)	mg/l	5	ND	ND	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	mg/l	30	21.2	6.2	20.8	7.1	32.4	6.4
12	Chemical Oxygen Demand as COD	mg/l	250	136	34	142.2	36	196	48
13	Arsenic as As	mg/l	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
14	Mercury (Hg)	mg/l	0.01	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001
15	Lead as Pb(max)	mg/l	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
16	Cadmium as Cd (max)	mg/l	2	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
17	Hexavalent Chromium as Cr+6	mg/l	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	mg/l	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19	Copper as Cu (max)	mg/l	3	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
20	Zinc as Zn(max)	mg/l	5	0.64	<0.05	0.66	<0.05	0.62	<0.05
21	Selenium (Se) (max)	mg/l	0.05	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
22	Nickel (Ni)	mg/l	3	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
23	Cyanide as CN (max)	mg/l	0.2	ND	ND	ND	ND	ND	ND
24	Fluoride as F (max)	mg/l	2	0.38	0.026	0.42	0.028	0.36	0.034
25	Dissolved Phosphates (P)	mg/l	5	0.44	<0.05	0.48	<0.05	0.52	<0.05
26	Sulphide (S)	mg/l	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
27	Phenolic Compounds as C6H5OH (max)	mg/l	1	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001
28	Bio-assay test		90% survival of fish after 96 hours in 100% effluent	98% survival of fishes	92% survival of fishes	92% survival of fishes	90% survival of fishes	94% survival of fishes	98% survival of fishes
29	Manganese (Mn)	mg/l	2	0.062	<0.005	0.066	<0.005	0.054	<0.005
30	Iron as Fe (max)	mg/l	3	1.86	0.71	1.92	0.77	1.74	0.66
31	Vanadium (V)	mg/l	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
32	Nitrate Nitrogen	mg/l	10	6.2	0.86	6.6	0.91	5.4	1.11

	Sar	npling Loca	ation:STPW-1:STP (Inlet) STPW-	2: STP (Outlet)		1		T	
Sl. No	Parameter	Unit	Standards (In land Surface water)	Jan -2	0	Feb	-20	Mar-2	20
				STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2
1	Colour & Odour	Hazen	Colorless/Odorless as far as practicable	02 & pungent smell	CL & U/O	<5 & pungent smell	CL & U/O	02 & pungent smell	CL & U/0
2	Suspended Solids	mg/l	100	76	30	70	26	96	52
3	Particulate size of SS		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850	< 850	< 850
4	pH Value		5.5-9.0	6.86	7.26	6.94	7.18	6.87	7.19
5	Temperature	°C	Shall not exceed 5°C above the receiving water temperature	26	26	26	26	22	22
6	Oil & Grease(max)	mg/l	10	4.6	ND	4.2	ND	3.6	ND
7	Total Residual Chlorine	mg/l	1	ND	ND	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	mg/l	50	8.1	1.8	7.2	1.6	8.4	1.4
9	Total Kjeldahl Nitrogen(as TKN)	mg/l	100	10.2	4.2	11.4	4.6	13.6	5.6
10	Free ammonia (as NH ₃)	mg/l	5	ND	ND	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	mg/l	30	21.2	6.2	20.8	7.1	32.4	6.4
12	Chemical Oxygen Demand as COD	mg/l	250	136	34	142.2	36	196	48
13	Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
14	Mercury (Hg)	mg/l	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
15	Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16	Cadmium as Cd (max)	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
17	Hexavalent Chromium as Cr*6	mg/l	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	mg/l	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19	Copper as Cu (max)	mg/l	3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
20	Zinc as Zn(max)	mg/l	5	0.64	<0.05	0.66	<0.05	0.62	<0.05
21	Selenium (Se) (max)	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
22	Nickel (Ni)	mg/l	3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
23	Cyanide as CN (max)	mg/l	0.2	ND	ND	ND	ND	ND	ND
24	Fluoride as F (max)	mg/l	2	0.38	0.026	0.42	0.028	0.36	0.034
25	Dissolved Phosphates (P)	mg/l	5	0.44	<0.05	0.48	<0.05	0.52	<0.05
26	Sulphide (S)	mg/l	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
27	Phenolic Compounds as C6H5OH (max)	mg/l	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
28	Bio-assay test		90% survival of fish after 96 hours in 100% effluent	98% survival of fishes	92% survival of fishes	92% survival of fishes	90% survival of fishes	94% survival of fishes	98% survival fishes

	Samj	oling Loca	tion:STPW-1:STP (Inlet) STPW-	2: STP (Outlet)					
Sl. No	Parameter	Unit	Standards (In land Surface water)	Jan -2	0	Feb	-20	Mar-2	20
29	Manganese (Mn)	mg/l	2	0.062	<0.005	0.066	<0.005	0.054	<0.005
30	Iron as Fe (max)	mg/l	3	1.86	0.71	1.92	0.77	1.74	0.66
31	Vanadium (V)	mg/l	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
32	Nitrate Nitrogen	mg/l	10	6.2	0.86	6.6	0.91	5.4	1.11

5. OIL SEPARATION PIT

W1: Workshop Water

			General Standards for						Analys	is Report					
Sl.	Parameters	Unit	discharge of Environmental Pollutants Part A- Effluents	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20
1	Colour	Hazen	5	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL	CL
2	Odour	-	Unobjectionable	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O
3	pH at 25 degree C	-	5.5-9.0	7.44	7.48	7.46	7.48	7.42	7.48	7.44	7.48	7.46	7.41	7.46	7.52
4	Total Dissolved Solids	mg/l	-	148	156	156	148	152	166	148	156	156	148	158	142
5	Copper as Cu	mg/l	3.0	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02
6	Fluoride as F	mg/l	2.0	0.031	0.042	0.038	0.026	0.028	0.031	0.031	0.042	0.038	0.031	0.034	0.03
7	Total Residual Chlorine	mg/l	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	Iron as Fe	mg/l	3.0	0.64	0.68	0.68	0.66	0.58	0.66	0.64	0.68	0.68	0.62	0.58	0.56
9	Manganese as Mn	mg/l	2.0	1.26	1.32	1.41	1.26	1.18	1.12	1.26	1.32	1.41	1.32	1.38	1.32
10	Nitrate as NO3	mg/l	10.0	3.78	4.2	4.42	1.4	3.64	4.1	3.78	4.2	4.42	4.36	4.28	4.18
11	Phenolic Compounds as C6H5OH	mg/l	1.0	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
12	Selenium as Se	mg/l	0.05	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
13	Cadmium as Cd	mg/l	2.0	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
14	Cyanide as CN	mg/l	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	Lead as Pb	mg/l	0.1	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
16	Mercury as Hg	mg/l	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
17	Nickel as Ni	mg/l	3.0	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
18	Arsenic as As	mg/l	0.2	<0.004	< 0.004	<0.004	<0.004	<0.004	<0.004	< 0.004	< 0.004	< 0.004	<0.004	< 0.004	<0.004
19	Total Chromium as Cr	mg/l	2.0	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
20	Zinc as Zn	mg/l	5.0	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
21	Hexavalent Chromium as Cr+6	mg/l	0.1	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01
22	Vanadium as V	mg/l	0.2	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
23	Total Suspended Solids	mg/l	100	48	52	56	52.8	44.2	48	48	52	56	52	58	52
24	Temperature	0C	shall not exceed 5°C above the receiving water temperature	26	26	26	28	28	26	26	26	26	25	32	28
25	Dissolved Oxygen	mg/l	-	5.6	6.2	6.4	6.6	6.8	6.6	5.6	6.2	6.4	6.6	6.8	6.6
26	BOD at 27°C for 3 days	mg/l	30	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
27	COD	mg/l	250	26	32	32	30	32	34	26	32	32	30	32	34
28	Oil & Grease	mg/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29	Ammonical Nitrogen as N	mg/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Page 13 of 30

			General Standards for						Analys	is Report					
Sl.	Parameters	Unit	discharge of Environmental Pollutants Part A- Effluents	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	0ct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20
30	Total Kjedahl Nitrogen as N	mg/l	100	1.8	2.4	2.4	2.6	3.2	2.6	1.8	2.4	2.4	2.6	3.2	2.6
31	Sulphide as S	mg/l	2.0	ND											
32	Free Ammonia as NH ₃	mg/l	5.0	ND											
33	Particulate Size of Suspended Solids	mg/l	850 μm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve
34	Bio-assay	mg/l	90% survival in 100% effluent	90% survival in 100% effluent	90% survival in 100% effluent	94% survival in 100% effluent	96% survival in 100% effluent	98% survival in 100% effluent	92% survival in 100% effluent	90% survival in 100% effluent	90% survival in 100% effluent	94% survival in 100% effluent	96% survival in 100% effluent	98% survival in 100% effluent	92% survival in 100% effluent
35	Dissolved Phosphates as PO4	mg/l	5.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

1.AAQ MONITORING (CORE ZONE)

AAQ1: Bamebari Camp

Monthly Average	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	SO ₂ (μg/m³)	NOx (μg/m³)	Ο ₃ (μg/m³)	CO mg/m³)	NH ₃ (μg/m³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Mn μg/m³)
Apr-19	49.89	28.11	6.98	13.24	6.83	0.47	22.93	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
May-19	53.02	28.03	7.43	14.39	7.24	0.59	27.90	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jun-19	54.47	31.41	8.40	16.96	8.13	0.57	30.62	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jul-19	54.37	24.56	8.10	16.92	8.32	0.42	27.64	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Aug-19	44.07	23.11	7.98	12.84	8.14	0.39	25.08	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sep-19	28.31	15.86	4.86	11.68	6.16	0.25	21.00	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct-19	47.39	22.91	4.39	10.02	5.36	0.22	26.99	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov-19	49.78	29.87	5.73	10.24	6.58	0.28	24.11	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec-19	58.51	35.11	7.10	15.99	8.24	0.44	25.91	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jan-20	61.69	37.01	7.12	15.79	8.24	0.53	27.71	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Feb-20	62.38	37.43	8.18	16.73	8.33	0.56	32.05	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Mar-20	57.70	34.62	9.86	14.29	7.73	0.37	24.86	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001

AAQ2: Mines Pit

Monthly Average	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	SO ₂ (μg/m³)	NOx (μg/m³)	Ο ₃ (μg/m³)	CO mg/m³)	NH ₃ (μg/m³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (μg/m³)	BaP (ng/m³)	Mn μg/m³)
Apr-19	67.60	35.75	10.91	14.45	6.68	0.65	22.83	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
May-19	77.09	35.26	11.72	16.52	7.02	0.64	24.48	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jun-19	82.09	33.28	12.13	16.16	7.66	0.76	24.20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jul-19	51.71	24.31	13.77	17.96	8.62	0.76	28.78	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Aug-19	49.86	27.81	8.13	13.12	8.58	0.59	26.04	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sep-19	31.88	17.85	6.30	11.41	6.31	0.49	21.73	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct-19	51.1	25.0	4.40	11.2	8.5	0.3	24.5	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov-19	51.5	30.9	5.10	10.5	9.0	0.3	24.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec-19	64.96	38.97	15.16	20.82	7.70	0.71	24.53	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jan-20	67.16	40.29	15.98	22.43	8.70	0.69	25.14	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Feb-20	67.25	40.35	17.31	22.83	9.49	0.77	26.24	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Mar-20	62.89	37.73	14.60	19.49	8.34	0.74	25.80	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001

AAQ3: Weigh Bridge

Monthly Average	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	SO ₂ (μg/m³)	NOx (μg/m³)	Ο ₃ (μg/m³)	CO mg/m³)	NH ₃ (μg/m³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (μg/m³)	BaP (ng/m³)	Mn μg/m³)
Apr-19	67.46	41.94	6.68	15.35	5.00	0.58	23.94	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
May-19	78.27	42.93	7.44	18.01	5.31	0.64	27.12	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jun-19	70.57	35.41	6.94	17.08	6.54	0.68	24.08	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jul-19	46.00	20.09	8.70	20.36	8.19	0.83	26.90	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Aug-19	46.59	26.14	8.50	11.84	8.03	0.64	27.07	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sep-19	34.80	19.50	4.60	9.20	8.40	0.41	21.20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct-19	55.97	28.08	7.43	12.32	6.43	0.30	23.88	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov-19	51.80	31.08	7.53	11.90	6.16	0.32	23.27	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec-19	63.58	38.15	8.01	18.09	7.22	0.62	27.06	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jan-20	71.47	42.88	8.73	18.46	7.62	0.66	27.32	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Feb-20	64.53	38.72	8.75	17.30	7.96	0.70	23.84	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Mar-20	64.26	38.55	9.80	37.48	7.66	0.60	25.73	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001

Annexure-I to Environmental Statement (Form-V) for Bamebari Iron & Manganese Mine for FY 2019-20 **AAQ MONITORING (BUFFER ZONE)**

	AMBIEN	T AIR QUALITY MON	TORING REPO	ORT (BUFFER 2	ZONE)			
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
BZ-1	Jaganathpur	NAAQ						
Parameters	Method of Measurement	NAAQ Standard S			Analy	sis Result		
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	48.2	54.8	58.8	51.8	45.8	30.6
PM _{2.5}	Gravimetric method	60 (μg/m³)	26.99	30.68	36.2	30.2	22.60	17.14
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2
СО	NDIR Spectroscopy method	4(mg/m³)	0.56	0.54	0.61	0.66	6.4	0.44
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
BZ-2	Bandhubaria		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
Parameters	Method of Measurement	Standard						
PM_{10}	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2
$PM_{2.5}$	Gravimetric method	$60 (\mu g/m^3)$	28.43	31.36	30.6	30.8	29.4	14.9
SO ₂	Improved West Gaeke method.	80 (μg/m³)	8.6	8.1	7.2	8.6	8.1	5.2
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6
CO	NDIR Spectroscopy method	4(mg/m³)	0.64	0.63	0.66	0.72	0.64	0.48
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20
As	AAS Method	6ng/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
HC	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

	AMBIEN	T AIR QUALITY MON	ITORING REPO	ORT (BUFFER 2	ZONE)			
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
BZ-1	Jaganathpur	NAAQ						
Parameters	Method of Measurement	Standard			Analy	sis Result		
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	48.2	54.8	58.8	51.8	45.8	30.6
PM _{2.5}	Gravimetric method	60 (μg/m ³)	26.99	30.68	36.2	30.2	22.60	17.14
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2
СО	NDIR Spectroscopy method	4(mg/m ³)	0.56	0.54	0.61	0.66	6.4	0.44
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Вар	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
Parameters	Method of Measurement	Standard						
PM_{10}	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$	28.43	31.36	30.6	30.8	29.4	14.9
SO ₂	Improved West Gaeke method.	80 (μg/m³)	8.6	8.1	7.2	8.6	8.1	5.2
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6
CO	NDIR Spectroscopy method	4(mg/m³)	0.64	0.63	0.66	0.72	0.64	0.48
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	<0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

	AMBIEN	T AIR QUALITY MON	ITORING REPO	ORT (BUFFER	ZONE)			
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
BZ-1	Jaganathpur	NAAQ						
Parameters	Method of Measurement	Standard			Analy	sis Result		
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	48.2	54.8	58.8	51.8	45.8	30.6
PM _{2.5}	Gravimetric method	60 (μg/m ³)	26.99	30.68	36.2	30.2	22.60	17.14
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2
CO	NDIR Spectroscopy method	4(mg/m ³)	0.56	0.54	0.61	0.66	6.4	0.44
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20
As	AAS Method	6ng/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01
Pb	AAS Method	1μg/m ³	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
Parameters	Method of Measurement	Standard				1		
PM_{10}	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2
$PM_{2.5}$	Gravimetric method	$60 (\mu g/m^3)$	28.43	31.36	30.6	30.8	29.4	14.9
SO ₂	Improved West Gaeke method.	80 (μg/m ³)	8.6	8.1	7.2	8.6	8.1	5.2
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6
CO	NDIR Spectroscopy method	4(mg/m³)	0.64	0.63	0.66	0.72	0.64	0.48
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20
As	AAS Method	6ng/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Pb	AAS Method	1μg/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	<0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

BZ-3	Raikara	NAAQ Standard	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	
------	---------	------------------	--------	--------	--------	--------	--------	--------	--

	AMBIEN	T AIR QUALITY MONI	TORING REPO	ORT (BUFFER 2	ZONE)			
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
BZ-1	Jaganathpur	NAAQ						
Parameters	Method of Measurement	Standard Analysis Result 100(μg/m³) 48.2 54.8 58.8 51.8 48.2						
PM ₁₀	Gravimetric method	100(μg/m³)	48.2	54.8	58.8	51.8	45.8	30.6
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$	26.99	30.68	36.2	30.2	22.60	17.14
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2
СО	NDIR Spectroscopy method	4(mg/m ³)	0.56	0.54	0.61	0.66	6.4	0.44
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
Parameters	Method of Measurement	Standard						
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2
$PM_{2.5}$	Gravimetric method	$60 (\mu g/m^3)$	28.43	31.36	30.6	30.8	29.4	14.9
SO ₂	Improved West Gaeke method.	80 (μg/m ³)	8.6	8.1	7.2	8.6	8.1	5.2
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6
CO	NDIR Spectroscopy method	4(mg/m ³)	0.64	0.63	0.66	0.72	0.64	0.48
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20
As	AAS Method	6ng/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m³	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	<0.002	<0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001
Parameters	Method of Measurement							
DM	Gravimetric method	$100(\mu g/m^3)$	54.2	58.45	60.2	51.56	50.2	26.6
PM_{10}		1						

Page 19 of 30

	Amiexure-1 to Environmentar Ambien	T AIR QUALITY MON								
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19		
BZ-1	Jaganathpur	NAAQ		1						
Parameters	Method of Measurement	Standard	Analysis Result							
PM ₁₀	Gravimetric method	100(μg/m³)	48.2	54.8	58.8	51.8	45.8	30.6		
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$	26.99	30.68	36.2	30.2	22.60	17.14		
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8		
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2		
СО	NDIR Spectroscopy method	4(mg/m ³)	0.56	0.54	0.61	0.66	6.4	0.44		
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20		
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01		
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	<0.001	< 0.001	<0.001	< 0.001		
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001		
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002		
НС	GC Method		< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001		
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19		
Parameters	Method of Measurement	Standard								
PM_{10}	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2		
PM _{2.5}	Gravimetric method	60 (μg/m ³)	28.43	31.36	30.6	30.8	29.4	14.9		
SO ₂	Improved West Gaeke method.	80 (μg/m ³)	8.6	8.1	7.2	8.6	8.1	5.2		
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6		
СО	NDIR Spectroscopy method	4(mg/m ³)	0.64	0.63	0.66	0.72	0.64	0.48		
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0		
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20		
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001		
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	<0.002	< 0.002	<0.002	< 0.002		
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
SO ₂	Improved West Gaeke method.	80 (μg/m ³)	7.8	8.3	8.4	9.2	8.6	4.8		
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	11.3	11.2	10.6	13.8	9.8		

	AMBIEN	T AIR QUALITY MON	ITORING REPO	ORT (BUFFER	ZONE)						
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19			
BZ-1	Jaganathpur	NAAQ									
Parameters	Method of Measurement	Standard	Analysis Result								
PM ₁₀	Gravimetric method	100(μg/m ³)	48.2	54.8	58.8	51.8	45.8	30.6			
PM _{2.5}	Gravimetric method	60 (μg/m³)	26.99	30.68	36.2	30.2	22.60	17.14			
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8			
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2			
CO	NDIR Spectroscopy method	4(mg/m ³)	0.56	0.54	0.61	0.66	6.4	0.44			
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0			
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20			
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001			
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002			
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001			
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19			
Parameters	Method of Measurement	Standard				T					
PM ₁₀	Gravimetric method	100(μg/m ³)	53.6	52.6	51.2	52.6	45.8	38.2			
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$	28.43	31.36	30.6	30.8	29.4	14.9			
SO ₂	Improved West Gaeke method.	80 (μg/m³)	8.6	8.1	7.2	8.6	8.1	5.2			
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6			
CO	NDIR Spectroscopy method	4(mg/m ³)	0.64	0.63	0.66	0.72	0.64	0.48			
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0			
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20			
As	AAS Method	6ng/m ³	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001			
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01			
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001			
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001			
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002			
НС	GC Method		< 0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001			
CO	NDIR Spectroscopy method	4(mg/m ³)	0.62	0.57	0.71	0.74	0.59	0.49			
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0			
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	27.2	<20			

Page 21 of 30

	AMBIEN	T AIR QUALITY MON	ITORING REPO	ORT (BUFFER 2	ZONE)			
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
BZ-1	Jaganathpur	NAAQ						
Parameters	Method of Measurement	Standard			Analys	sis Result		
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	48.2	54.8	58.8	51.8	45.8	30.6
PM _{2.5}	Gravimetric method	60 (μg/m³)	26.99	30.68	36.2	30.2	22.60	17.14
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2
CO	NDIR Spectroscopy method	4(mg/m³)	0.56	0.54	0.61	0.66	6.4	0.44
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pb	AAS Method	1μg/m³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19
Parameters	Method of Measurement	Standard						
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$	28.43	31.36	30.6	30.8	29.4	14.9
SO ₂	Improved West Gaeke method.	80 ($\mu g/m^3$)	8.6	8.1	7.2	8.6	8.1	5.2
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6
CO	NDIR Spectroscopy method	4(mg/m ³)	0.64	0.63	0.66	0.72	0.64	0.48
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
As	AAS Method	6ng/m ³	< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01

Page 22 of 30

	Affilexure-1 to Environmentar AMBIEN	T AIR QUALITY MON	ITORING REPO	ORT (BUFFER 2					
	Sampling Location		Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	
BZ-1	Jaganathpur	NAAQ		<u>'</u>					
Parameters	Method of Measurement	Standard	Analysis Result						
PM ₁₀	Gravimetric method	100(μg/m³)	48.2	54.8	58.8	51.8	45.8	30.6	
PM _{2.5}	Gravimetric method	60 (μg/m³)	26.99	30.68	36.2	30.2	22.60	17.14	
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.3	6.1	7.4	8.2	8.1	4.8	
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	12.2	12.4	10.2	11.6	10.8	12.2	
СО	NDIR Spectroscopy method	4(mg/m³)	0.56	0.54	0.61	0.66	6.4	0.44	
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20	
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	
BZ-2	Bandhubaria	NAAQ	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	
Parameters	Method of Measurement	Standard							
PM_{10}	Gravimetric method	$100(\mu g/m^3)$	53.6	52.6	51.2	52.6	45.8	38.2	
PM _{2.5}	Gravimetric method	60 (μg/m³)	28.43	31.36	30.6	30.8	29.4	14.9	
SO ₂	Improved West Gaeke method.	80 (μg/m³)	8.6	8.1	7.2	8.6	8.1	5.2	
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.4	13.4	11.4	10.8	13.6	10.6	
СО	NDIR Spectroscopy method	4(mg/m ³)	0.64	0.63	0.66	0.72	0.64	0.48	
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20	
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	
Pb	AAS Method	1μg/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	
Bap	Gas Chromatography	1ng/m ³	< 0.002	<0.002	< 0.002	< 0.002	<0.002	< 0.002	
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	
			< 0.001		< 0.001			< 0.001	

Page 23 of 30

	AMBIEN	T AIR QUALITY MON	ITORING REPO	ORT (BUFFER	ZONE)	1		
	Sampling Location	NAAQ	OCT-19	NOV-19	DEC-19	JAN-20	FEB-20	MAR-20.
BZ-1	Jaganathpur	Standard-						
Parameters	Method of Measurement	2009			Analy	sis Result		
PM ₁₀	Gravimetric method	100(μg/m ³)	48.2	54.8	52.8	56.6	60.2	56
PM _{2.5}	Gravimetric method	60 (μg/m³)	26.992	30.688	31.68	33.96	36.12	33.6
SO ₂	Improved West Gaeke method.	80 (μg/m³)	5.6	6.2	7.6	8.6	6.8	7.9
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.1	12.1	11.2	11.2	10.6	12.2
СО	NDIR Spectroscopy method	4(mg/m ³)	0.54	0.58	0.66	0.71	6.4	0.68
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	25.8	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
BZ-2	Bandhubaria	NAAQ	OCT-19	NOV-19	DEC-19	JAN-20	FEB-20	MAR-20.
Parameters	Method of Measurement	Standard						
PM_{10}	Gravimetric method	$100(\mu g/m^3)$	50.6	56.6	54.8	60.6	70.2	58
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$	28.336	31.696	32.88	36.36	42.12	34.8
SO ₂	Improved West Gaeke method.	80 (μg/m³)	8.4	9.1	8.1	8.6	10.2	8.4
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.6	12.4	11.4	13.2	13.8	12.4
CO	NDIR Spectroscopy method	4(mg/m ³)	0.62	0.66	0.79	0.68	6.6	0.68
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	26.6	<20
As	AAS Method	6ng/m ³	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001
Bap	Gas Chromatography	1ng/m ³	< 0.002	<0.002	<0.002	< 0.002	<0.002	<0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

BZ-3	Raikara	NAAQ Standard	OCT-19	NOV-19	DEC-19	JAN-20	FEB-20	MAR-20.
Parameters	Method of Measurement							
PM ₁₀	Gravimetric method	$100(\mu g/m^3)$	52.2	5808	58.4	60.6	73.2	60.2
PM _{2.5}	Gravimetric method	60 (μg/m³)	29.232	3252.48	35.04	36.36	43.92	36.12
SO ₂	Improved West Gaeke method.	80 (μg/m³)	8.8	8.4	9.6	9.8	8.2	9.8
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)	11.2	11.6	11.4	12.6	13.8	11.8
со	NDIR Spectroscopy method	4(mg/m ³)	0.64	0.66	0.79	0.84	7.4	0.82
03	Chemical Method	100 (μg/m3)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
NH3	Indo Phenol Blue Method	400 (μg/m3)	<20.0	<20.0	<20.0	<20	27.2	<20
As	AAS Method	6ng/m ³	< 0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001
Ni	AAS Method	20μg/m ³	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01
Pb	AAS Method	1μg/m ³	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001
С6Н6	Gas Chromatography	5μg/m ³	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001
Вар	Gas Chromatography	1ng/m ³	< 0.002	< 0.002	< 0.002	<0.002	<0.002	< 0.002
НС	GC Method		< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001

1. FUGITIVE EMISSION

L-1	Near Sorting Yard (Joribar Block)	NAAQ Standard	Monitoring Date	Apr- 19	May- 19	Jun- 19	Jul- 19	Aug- 19	Sep- 19	0ct- 19	Nov- 19	Dec- 19	Jan- 20	Feb- 20	Mar- 20
Parameters	Method of Measurement		Analysis	-	-										
SPM	Gravimetric method	1200(μg/m ³)	Result			-	-	632.2	412.6	686.6	348.8	714.6	708.6	711.6	706.2
L-2	Near Stack Yard (Joribar Block)	NAAQ Standard	Monitoring Date	Apr- 19	May- 19	Jun- 19	Jul- 19	Aug- 19	Sep- 19	0ct- 19	Nov- 19	Dec- 19	Jan- 20	Feb- 20	Mar- 20
Parameters	Method of Measurement	1200(μg/m³)	Analysis Result	-	-	-	-	482.6	438.2	502.6	392.6	521.2	536.2	544.8	552.2
SPM	Gravimetric method														
L-3	Near Haul Road (Joribar Block)	NAAQ Standard	Monitoring Date	Apr- 19	May- 19	Jun- 19	Jul- 19	Aug- 19	Sep- 19	0ct- 19	Nov- 19	Dec- 19	Jan- 20	Feb- 20	Mar- 20
Parameters	Method of Measurement	1200(μg/m³)	Analysis Result	-	-	-	-	411.2	388.6	446.2	446.8	502.8	518.8	526.6	518.8

Page 25 of 30

	Annexure-I to	Environmenta	l Statement (F	orm-V)	for Bar	nebari	Iron &	. Manga	nese Mi	ine for F	Y 2019-	20			
L-1	Near Sorting Yard (Joribar Block)	NAAQ Standard	Monitoring Date	Apr- 19	May- 19	Jun- 19	Jul- 19	Aug- 19	Sep- 19	0ct- 19	Nov- 19	Dec- 19	Jan- 20	Feb- 20	Mar- 20
SPM	Gravimetric method														

Ambient Noise

Locat	Logation			Day time				Standard			ight time				Standard as
ion	Location		Noi	se Level	in dB (A	.) Leq		as		No	ise Level	in dB(A)	leq		per CPCB
ID		Apr- 19	May- 19	Jun- 19	Jul- 20	Aug-20	Sep- 20	per CPCB	Apr- 19	May- 19	Jun-19	Jul-20	Aug- 20	Sep-20	•
N-1	Town ship	-	ı	68	68.4	66.4	62.8	75	-	-	50.8	48.0	48.1	49.2	70
N-2	Hospital	-	ı	48	48.0	44.9	46	50	-	-	38.8	34.2	36.8	39.0	40
N-3	Mines Area	-	-	66	66.2	65.4	61.9	75	-	-	50.4	50.6	48.6	42.6	70

DG SET EMISSION

	Sampling Location: 10	0 KVA DG S	SET	June-19	Sept-19	Dec-19	Mar-20
SL.No	Parameters Analyzed	Unit	CPCB LIMIT		Res	sult	
1	Stack Temperature	0 C		120	118	124	128
2	Velocity	m/Sec		9.1	10.6	9.6	10.2
3	Concentration Of Particulate Matter As PM	mg/Nm³	50	30	31.2	38	44
4	Oxides of Nitrogen as Nox	mg/Nm³	400	52	54.6	62.8	66
5	Carbon Monoxide as CO	mg/Nm ³	150	30	32.6	38.8	40.8
6	Non Methyl Hydrocarbon as C	mg/Nm³	****	6.5	7.2	7.2	7.6

1. PERSONAL DUST SAMPLING

Name of the		Oct-2019			NOV-2019			DEC-2019
Person	Personal Number	PM (μg/m³)	Name of the Person	Personal Number	PM (μg/m³)	Name of the Person	Personal Number	PM (μg/m³)
Draupadi Lahur	TSP/806096/0919	6.6	Simon Baebandi	TSP/806076/0919	6.6	Lalatendu Lohar	TSP/798688/0919	8.1
Nirakar Patra	TSP/753639/0819	7.1	Balma Munda	TSP/753631/0819	6.8	Santana Munda	TSP/753276/0819	8.4
Anita Patra	BMM-304	7.4	Rajen Munda	BMM-122	8.1	Bigneswari Malakut	BMM-236	8.2
lalatendu Lohar	TSP/798688/0919	7.2	Bhumi Naik	BMM-184	7.8	Johan Hembram	MW0719167159	8.4
Santana Munda	TSP/753276/0819	7.8	Sapani Purti	BMM-414	8.6	Saraswati Tanti	MW0719166977	8.2
Bigneswari Malakut	BMM-236	7.5	Amita Patra	BMM-304	8.1	Shradhanjali Maharana	MW0719167124	8.1
Sibani Soren	TSP/811305/0919	7.4	Bigneswari Malakut	BMM-236	7.8	Bhaina Hembram	MW0719166713	8.2
Simon Bulbandi	TSP/806076/0919	6.9	Simon Bulbandi	TSP/806076/0919	7.4	Parinda Munda	MW0719167743	8.4
Balma Munda	TSP/753631/0819	6.6	Balma Munda	TSP/753631/0819	7.2			
Kamal Patra	TSP/806098/0919	7.4	Kamal Patra	TSP/806098/0919	8.1			

Name of the		Jan-20			Feb-20			Mar-20
Person	Personal Number	PM (μg/m³)	Name of the Person	Personal Number	PM (μg/m³)	Name of the Person	Personal Number	PM (μg/m³)
lalatendu Lohar	TSP/798688/0919	7.8	lalatendu Lohar	TSP/798688/0919	8.4	lalatendu Lohar	TSP/798688/0919	4.1
Santana Munda	TSP/753276/0819	7.6	Santana Munda	TSP/753276/0819	8.6	Santana Munda	TSP/753276/0819	4
Bigneswari Malakut	BMM-236	8.1	Bigneswari Malakut	BMM-236	8.6	Bigneswari Malakut	BMM-236	3.9
Johan Hembram	MW0719167159	8.2	Johan Hembram	MW0719167159	8.4	Johan Hembram	MW0719167159	3.6
Saraswati Tanti	MW0719166977	8.4	Saraswati Tanti	MW0719166977	8.2	Saraswati Tanti	MW0719166977	3.2
Shradhanjali Maharana	MW0719167124	8.2	Shradhanjali Maharana	MW0719167124	8.4	Shradhanjali Maharana	MW0719167124	4.2
Bhaina Hembram	MW0719166713	7.8	Bhaina Hembram	MW0719166713	8.6	Bhaina Hembram	MW0719166713	4.4
Parinda Munda	MW0719167743	7.6	Parinda Munda	MW0719167743	7.9	Parinda Munda	MW0719167743	3.8

AMBIENT NOISE (Oct'19 to March'20)

Locat ion	Location	Day time Equivalent Noise Level in dB (A) Leq					Standard as	Night time Equivalent Noise Level in dB(A) leq				Standard as			
ID		Oct- 19	Nov- 19	Dec- 19	Jan- 20	Feb-20	Mar- 20	per CPCB	Oct-19	Nov- 19	Dec- 19	Jan-20	Feb- 20	Mar-20	
N-1	Town ship	64	70.2	68	67.6	69.6	64.8	75	44	48	48	49.2	50.6	51.8	70
N-2	Hospital	48	52.6	44.2	48.6	52.8	56	50	30	32.8	36.8	39.2	41.2	44.6	40
N-3	Mines Area	64	66.2	71.4	70.8	71.2	68.8	75	44	42.8	50.6	51.6	42.8	40.8	70

EQUIPMENT NOISE:

Name of Location	Unit	Result OCT-19	Name of Location	Result NOV-19	Name of Location	Result DEC-19
OR-09K-7335(Volvo Truck)	- dB	71.2	MW-Hyua (OR09N9453)	78.8	OD-09K-3107	88.2
HI Tach 200LC(Sovel-1)		78.8	MW-Hyua (OR09N9468)	76.4	OD-09K-3109	83.8
DOOSAN 340LC(Sovel-2)		72.8	Hyua (OD09K 3114)	70.6	OD-09K-3930	80.6
OD-09A-6541(Truck Tata)		73.6	MW-Hyua (OR09N9470)	71.8	OD-09K-3931	81.8
OD-09A-6540(Truck Tata)		74.8	Loader Screen Plant (OD09K1796)	75.6	OD-09K-3932	82.6

1. DUST FALL ANALYSIS

	Total Dust Fall (t/km2/month)	Analysis Result				
Date of Sampling	Total Dust Fall (t/km2/month)	Co (%)	Ni(%)	Hg(%)	As (%)	
June - 19	0.56	< 0.001	< 0.001	< 0.001	< 0.001	
September-19	0.36	< 0.001	< 0.001	< 0.001	< 0.001	
01.12.2019 TO 31.12.2019	0.66	< 0.001	< 0.001	< 0.001	< 0.001	
01.12.2019 10 31.12.2019						
01.03.2020 TO 31.03.2020	0.64	<0.001	<0.001	<0.001	<0.001	

2. SOIL QUALITY ANALYSIS

Month	Co (%)	Ni(%)	Hg(%)	As (%)
Jun-19	0.0031	0.052	<0.000002	<0.000002
Sep-19	0.0038	0.046	<0.000002	<0.00002
Dec-19	0.036	0.062	<0.000002	<0.000002
Mar-20	0.041	0.058	<0.000002	<0.000002

1. GROUND WATER QUALITY (TRACE METALS)

Panchayat Office Borewell

Parameters	Iron as Fe	Copper as Cu	Manganese as Mn	Hexavalent Chromium as Cr ⁶⁺	Mercury as Hg	Cadmium as Cd	Selenium as Se	Arsenic as As	Lead as Pb	Zinc as Zn
November-19	0.18	< 0.02	< 0.05	< 0.05	< 0.002	< 0.01	< 0.001	< 0.004	< 0.01	< 0.05

1. GROUND WATER (LEVEL) ANALYSIS

A. GWL1 : Joribahal Pump House

B. GWL2 : Nimera Village

Paramete	rs	Unit	Analysis Result
L 10	GWL1		6.1
June-19	GWL2		6.6
Neverthan 10	GWL1	mt/bgl	7.1
November-19	GWL2		2.6