

The Member Secretary
Jharkhand State Pollution Control Board
T A Division Building,
HEC Campus, Dhurwa
Ranchi – 834004

MD/ ENV/ 304 /120 / 2022 Date: 23rd September 2022

Sub: Environmental Statement of Noamundi Iron Mine, M/s Tata Steel Limited for 2021-22.

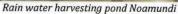
Dear Sir

Kindly find attach herewith the Environmental Statement in the prescribed format (Form V) as per "Environmental (Protection) Amendment Rules 1992" of our Noamundi Iron Mine for your kind perusal.

Thanking you,

Yours faithfully f: Tata Steel Limited

Head (Planning), OMQ


Encl: As above

Copy to: The Regional Officer, Jharkhand State Pollution Control Board, MB/12 New Housing Colony, Adityapur, Jamshedpur - 831013, Jharkhand

TATA STEEL LIMITED

ENVIRONMENT STATEMENT Year - 2021-22

Dust Extraction System at Noamundi

NOAMUNDI IRON MINE TATA STEEL LIMITED

September - 2022

FORM - V (See Rule -14)

ENVIRONMENT STATEMENT FOR THE FINANCIAL YEAR ENDING THE 31st MARCH, 2022 NOAMUNDI IRON MINE, M/S TATA STEEL LIMITED

PART-A

7	Name and address of the owner/ occupier of the industry, operation or process	Mr. Shirish Shekhar, Chief (Noamundi) Noamundi Iron Mine, Tata Steel Limited PO.: Noamundi, DistWest Singhbhum Jharkhand – 833217 : Mr. Sanjit Kumar Adhya, Mines Manager Noamundi Iron Mine, Tata Steel Limited PO.: Noamundi, DistWest Singhbhum Jharkhand – 833217				
	Nominated Owner	4 4	Mr. Atul Bhatnagar, General Manager, OMQ division, Administrative Building, Noamundi Iron Mine, Tata Steel Limited PO.: Noamundi, DistWest Singhbhum Jharkhand – 833217 Mr T V Narendran, CEO & Managing Director, Tata Steel Ltd, Bombay House, 24 Homi Mody Street, Fort, Mumbai 400 001			
2	Industry Category	:	Opencast Iron Mining Industry (Major)			
, co	Production Capacity	d p	Mine: 19 MTPA Iron Ore ROM Processing: 27 MTPA (Feed to plant) Production details in FY22: ROM (Ore + Subgrade): 11,382,350,365 T Subgrade: 658,818 T Throughput (Feed to plant): 10,766,408 T OB waste: 4,315,550 T Tailings: 521396 T			
4	Year of Establishment	:	1926			
5	Date of last Environmental Statement submitted.	:	22 nd September 2021, vide letter no. MD/ENV/226/120/2021 for the year 2020-21			

<u>PART-B</u> <u>Water and Raw Material Consumption</u>

(i) Water Consumption:

Consumption Head:	2020-21 (in cu.m/day) (Annual Average)	2021-22 (in cu.m/day) (Annual Average)
Process	2609.89	2949.87
Spraying in mine pit, services	264.20	177.55
Domestic	2236.23	2431.43
Name of the product	Process water consumptio	n per product output (m3/MT)
Iron Ore	0.10	0.10

ii) Raw Material Consumption

The following items have been consumed/utilized:

		Consumption of Raw Material			
Name of Raw Materials	Name of Product	During previous financial year (2020-21)	During current financial year (2021-22)		
High Speed Diesel		6616841 Ltrs	7732227 Ltrs		
Petrol		92606 Ltrs	0		
Lubricants.		49510 Ltrs	169908 Ltrs		
Grease	Iron Ore of	4804 kg	9956 kg		
Explosive of all types (Explosive, codex, detonator)	steel grade	3206250 kg	3597007 kg		
Gas		441 cum	0		
Tyres		30 nos.	24 nos.		
Drill rods		217 nos.	315 nos.		
Electric Power in KWH			1		
Consumed	Iron Ore of	50020200	51401650		
Generated (From 3 MW Solar Plant)	steel grade	4286362	4090921		

PART-C
POLLUTION DISCHARGED TO ENVIROMENT/ UNIT OF OUTPUT
(Parameters as specified in the consent issued)

Pollutants	Quantity of Pollutants	Concentration of	Percentage of variation		
	discharged (mass / day)	Pollutants discharges			
	uischargen (mass / uay)		from prescribed		
	etyl 11 11 11 1	(mass / day)	standards with reasons		
a) Water	The Noamundi Iron Mine is are zero effluent discharge chemicals and is provided with Slime Ponds where the socirculated back to the plant. Around 4000m length Garllast five years. Settling Pipresent to check Surface structures ensures that only Three sewage treatment plant 50 KLD are installed at Noamundia & grease pit with collecting Further, two ETP of 10 KLD (Bottom Bin). All the treated All the water quality results	units; The beneficiation with close circuit recycling olids settle naturally & to for ore washing. land Drains along dumps ts (840cum) and Check run-offs during rain. To clear water leaves the minants (STPs) having capacit mundi colony. A 30 KLD Colon system at HEMM main each are also installed at the water is re-used for hortile.	process does not use any system i.e. Zero Discharge the overflow water is rehave been constructed in Dams (650cum) are also the network of all these ne lease boundary. By of 200 KLD, 50 KLD and ETP is installed along with tenance area (Workshop). Hospital and Dispatch area icultural purposes.		
b) Air	The Noamundi Iron Mine is an opencast iron mine with processing plant & dispatch unit. The air quality in the form of fugitive, dust fall, ambient, respirable is being measured and monitored regularly and is well within limits.				

Pollutants	Quantity of Pollutants	Concentration of	Percentage of variation				
- Gratanto	discharged (mass / day)	Pollutants discharges	from prescribed				
	anountingen (mass / aug)	(mass / day)	standards with reasons				
	Water jets with mist water spray is used for suppressing fugitive emission from						
	various activities. Measure sprinkling etc. is done on he specified in the guidelines found within the prescribed all transfer chutes have been	es such as fixed water aul roads to ensure fugitives. The measured values I norms. All feed hoppers	sprinkling, mobile water we emission under limits as for fugitive emissions are where ore is unloaded and				
	Housekeeping is maintained in the plant area. Loading of processed ore for dispatch through rail is done through Rapid Loading System installed at our captive rail siding. Raw material (HSD, explosives, etc) are unloaded in covered area. The internal road within beneficiation plant complex and township are made with black top & concrete and maintained regularly.						
	Dust extractor system is installed in primary crushing facility of the beneficiation plant.						
	Two continuous ambient air quality monitoring stations have been established in the core zone for monitoring of PM_{10} , $PM_{2.5}$, SOx , NOx , (NO2 & NO) & CO parameters with online data connectivity with State Pollution Control Board server. The Ambient air quality is found within the prescribed standards.						
	A thick & dense vegetation is also placed in all surrounding the area which significantly reduces the pollution load.						
	The results of air quality r	nonitoring are attached	as annexure 2.				

PART-D

HAZARDOUS WASTES

As specified under the Hazardous & Other Waste (Management & Trans boundary Movement)
Rules, 2016 and amendment thereof

Hazardous Wastes	Total Quantity		
	During previous financial year (2020-21)	During current financial year (2021-22)	
i) From Process			
 Used Oil 	122065 Litres	128180 Litres	
 Waste containing Oil (Jute etc.) 	Nil	Nil	
 Lead Bering residues (Batteries etc) 	235 nos.	4.40 MT	
 Waste Grease drums 	Nil	6.98 MT	
 Rejected & scrap copper cable 	Nil	11.0 MT	
• Rejected & used hose pipes	Nil	14.36 MT	
ii) From Pollution Control Facility • Waste oil from oil & grease separation pit	Nil (Included	l in process)	
 Sludge from oil and grease separation pit 	All the Hazardous waste as per		

PART-E SOLID WASTES

Solid wastes from Noamundi Iron Mine is categorised in two parts i.e. Overburden/rejects removed during mining operations and slime/tailings generated from beneficiation / processing of Iron Ore. All the materials overburden and tailings are stocked in designated place inside the mine. However, other solid waste is also being generated from mining and processing / beneficiation activity.

Sources	During previous financial year (2020-21)	During current financial year (2021-22)	
a) From Process	THE PERSONNEL PROPERTY OF THE PERSONNEL PROP		
 From mining as Overburden 	3044284 Tonne	431550 Tonne	
 From OB Plant as Tailing 	458658 Tonne	521396 Tonne	
b) From Pollution Control Facility Ash from Hospital Incinerator	88.63 Kg.	72.91 kg	
c) i. Quantity recycled or reutilized within the unitSlime / Tailings	Slime beneficiation process being explored	Slime beneficiation process being explored	
iii. Quantity disposed Mining overburden	3044284 Tonne	431550 Tonne	

PART-F

PLEASE SPECIFY THE CHARACTERISTICS (IN TERMS OF COMPOSITION AND QUANTUM) OF HAZARDOUS AS WELL AS SOLID WASTES AND INDICATE DISPOSAL PRACTICE ADOPTED FOR BOTH THESE CATEGORIES OF WASTES

The Noamundi Iron Mine and processing / beneficiation facility generate hazardous waste mainly in the form of used oil. The used oil is being generated during the maintenance of HEMMs which are used in mining operations. Used oil is collected and stored in concrete pits within the maintenance complex. The used oil is disposed to authorized agency for recycling and reuse. During handling and maintenance of HEMM, the oil soaked materials (jute etc.) is been kept and disposed in impervious pit. The hazardous waste such as used batteries is sold to authorized agency.

The other solid waste in the form of overburden, sub-grade mineral and slime/tailings are stocked in designated place.

PART-G

IMPACT OF POLLUTION ABATEMENT MEASURES TAKEN ON CONSERVATION OF NATURAL RESOURCES AND ON THE COST OF PRODUCTION

- Noamundi Iron Mine is continuously a five-star rated iron mine as per Sustainable Development Framework (SDF) declared by Indian Bureau of Mines, Ministry of Mines, Govt. of India from last successive several years.
- For mineral conservation techniques are installed and operated by unit, such as blending of waste / subgrade materials, use of low-grade ore etc as per customer quality requirements.
- Evaluation of water consumption is being carried out and suitable measures for reducing
 water consumption have been identified such as commissioning of paste thickener etc.
 There is zero waste-water discharge by the mine and it will be maintained in the future as
 well. Optimization of the water consumption will be done to reduce the specific water
 consumption year-on-year.
- Rainwater harvesting (RWH) ponds and ground water recharge structures have been constructed and approved by the Ground Water Directorate, Jharkhand, Ranchi. The capacity of RWH ponds is 19,785 cum. The catchment area of the RWH pond complex is approx. 117 Ha hence it has been calculated that the rainwater harvesting potential of the RWH pond structure is approx. 12,50,000 cum/annum.
- A 3MW Solar Power Plant has also been installed and operated at Noamundi since 2017.

PART-H

ADDITIONAL MEASURES/ INVESTMENT PROPOSAL FOR ENVIRONMENTAL PROTECTION INCLUDING ABATEMENT OF POLLUTION, PREVENTION OF POLLUTION

- Ore is processed in the dry and wet plants where the material is handled through closed conveyor belts. Then the dry and wet processed ore are stored in closed silos separately.
 Loading of processed ore for dispatch through rail is done through Rapid Loading System installed at our captive rail siding.
- Various toe wall, garland drains are made as per progressive mine plan. For mineral
 conservation measures, slime (processed waste) from pond is been stocked at designated
 place for future use.
- For ground water augmentations, during last four years 30 water ponds are developed with 0.10million m³ water holding capacity in surrounding villages.
- Bio-gas plant for adequate disposal of canteen waste & reduction of LPG are installed.
- Approx. Rs. 1 Crore has been spent towards upgradation of environmental laboratory including purchase of various scientific equipment.
- For biodiversity conservation, a niche-nesting project implemented at Noamundi which
 provides artificial wooden nest boxes for birds in reclaimed area for enhancing their
 population naturally. Nursery of 1 Lakh sapling developed in area and only local trees are
 planted.
- In addition to the above Tata Steel Rural Development Society (TSRDS) is engaged in peripheral developmental activities in villages around the mine like various civil amenities projects, digging ponds in support to provision of irrigation water and for other domestic use irrigation and agricultural extensions and in recharging groundwater by arresting the flow of rainwater in downstream, plantation programmes, medi-care and health, education, rural sports and skill development, rural cultural promotion activities taken up in these villages.

PART-I

ANY OTHER PARTICULARS FOR IMPROVING THE QUALITY OF THE ENVIRONMENT

Noamundi Iron Mine of TATA Steel Ltd. is a captive mine and is certified for the Integrated Management System (ISO 9001:2015, ISO 14001:2015 and ISO 45001:2018) from last two decades. The unit has obtained various prestigious accolades and is the only five-star rated mine of Jharkhand State.

The unit is having a full-fledged Environmental Management department with well qualified personnel from environmental background to take care of all aspects relating to mines and processing plant of unit. Various parameters are measured in Env lab, which is recommended from State Pollution Control Board. The lab is under upgradation and shall be accredited for NABL.

Various awareness programs throughout the year conducted in the area which included celebration of World Environment Day, World Water Day, Mine Environment & Mineral Conservation Week, Word Bio-diversity Week, Annual Flower & Vegetable Show etc. In which environment conservation models, current & future proposals are made, environment messages through Nukkad natak, poems, slogans, swachhata drive is been done every year.

The mine has established a dense plantation in mine out area of 126 ha known as Hill 1 & 2 which makes the mine very unique. For conservation of biodiversity of the area, various initiatives such as niche nesting – an artificial nesting box for bird are placed in area, Butterfly Park, Medicinal Park, Green Park, Dorabji Park, Nakshatra Park etc. developed in area.

All above efforts make the mine clean – green and sustainable. In the year 2021-22, Rs 21.05 Cr have been spent on various environmental activities from Noamundi Iron Mine.

Head (Planning), OMQ

WATER QUALITY DATA 2021-22 Noamundi Iron Mine

(Annual Average)

									ţ
	Si	EWAGE TREA	TMENT PLAT	NT	EFFLUENT TREATMENT PLANT				
Parameters	New Town Ship STP 50 KLD		Central Camp STP 50 KLD		Bottom Bin ETP 10 KLD		Hospital ETP 10 KLD		Standard
	Inlet	Outlet	inlet	Outlet	Inlet	Outlet	Inlet	Outlet	
pH*	6.97	7.40	6.77	7.21	6.35	7.36	6.31	7.25	5.5-9.0
TSS (mg/l)	87.75	24.75	78.25	23.75	90.5	23.75	133.75	18.75	100
BOD 5 days (mg/l)	28.00	10.35	29.75	7.68	25.0	8.38	28.95	11.02	30
COD (mg/l)	80.50	28.97	93.38	22.30	71.13	25.13	87.9	28.43	250
Oil & Grease (mg/l)	BDL(DL-4)	BDL(DL-4)	BDL(DL-4)	BDL(DL-4)	BDL(DL-4)	BDL(DL-4)	BDL(DL-4)	BDL(DL-4)	10
Iron (mg/l)	0.73	0.62	0.69	0.53	0.63	0.63	0.64	0,94	3.0
Faecal Coliform	133,0	61.00	117.25	45.75	143,75	54.50	132.75	61,50	*

Note: BDL - Below detection limit.

WATER QUALITY DATA 2021-22 Noamundi Iron Mine (Annual Average)

	(Alliliaal Av	ciobc)		
	SURFACE			
Parameters	Balijharan Nalla Upstream	Balijharan Nalla Downstream	Standard	
рН*	7.44	7.41	5.5-9.0	
TSS (mg/l)	BDL (DL-10)	BDL (DL-10)	100	
BOD 5 days (mg/l)	BDL(DL-2)	BDL(DL-2)	30	
COD (mg/l)	BDL(DL-4)	BDL(DL-4)	250	
iron (mg/l)	0,12	0,27	0.5	
Total Coliform	<2	<2	5000	

Note: BDL - Below detection limit.

AIR QUALITY DATA 2021-22 Annual Average Air quality of Noamundi Iron Mine of FY'22

Pollutants	Concentration of pollutants (µg/m³)	Standards (µg/m³)	
MRSS Building			
1. PM ₁₀	54.47	100	
2. PM _{2.5}	20.52	60	
3. SO ₂	8.43	80	
4. NO _x	17.29	80	
5. CO.	0.23	4*	
Bottom Bin area	The state of the s		
1. PM ₁₀	53.27	100	
2. PM _{2.5}	20.21	60	
3. SO ₂	7,90	80	
4. NO _x	16.73	80	
5. CO	0.21	4*	
Near WTP			
1, PM ₁₀	52.04	100	
2. PM _{2.5}	29.16	60	
3. SO ₂	8.91	80	
4. NO _x .	17.35	80	
5. CO	0.22	4*	
Near Hospital			
1. PM ₁₀	51.75	100	
2. PM _{2.5}	18.08	60	
3. SO ₂	7.54	80	
4. NO _x	17.08	80	
5. CO	0.21	4*	

^{*}Unit of CO is mg/m³