

AEL/SPCB/BE-03/2023-04/109 September 27, 2023

The Member Secretary
State Pollution Control Board, Odisha
Parivesh Bhawan, A/118,
Nilakantha Nagar, Unit-VIII,
Bhubaneswar-751 012

Subject: Environmental Statement for the financial year 2022-23 for Angul Energy Ltd.

Banarpal, Angul.

Reference: Consent Order No.4503/IND-I-CON-6306 dated 23.03.2022

Dear Sir,

In reference to the captioned subject and letter cited above, we are submitting herewith "Annual Environmental Statement (Form-V)" duly filled in the prescribed format for Angul Energy Ltd. At: Ganthigadia, PO: Nuahata, Via: Banarpal, Dist.: Angul, Odisha, for the financial year 2022-23.

This is for your kind information and necessary record please.

Thanking you,

Yours faithfully,

For Angul Energy Limited

Shailesh Verma

Managing Director

Encl: As above

Copy to: 1. The Regional Officer, Odisha State Pollution Control Board, Angul, Odisha.

2. Deputy Director General, MoEF&CC, Integrated Regional Office (EZ), A/3, Chandrashekarpur, Bhubaneswar-751023.

[FORM-V]

(See rule 14 of The Environment Protection Act, 1986) Environment Statement for the financial year ending 31 March 2023

PART - A

	General Information									
	Name of the Company	Angul Energy Limited								
1.	Name & Address of the owner/occupier of the industry, operation or process	Sri Shailesh Verma, Managing Director Angul Energy Limited At: Ganthigadia PO: Nuahata Via: Banarpal Dist.: Angul Pin: 759128, Odisha								
2.	Industry Category	-								
	Primary (STC Code),	Coal Based Thermal Power Plant								
	Secondary (STC Code)	Category -Red								
3.	Production capacity-Units	Production Capacity: 465 MW (2x150 MW + 1x165 MW)								
4.	Year of establishment	2010								
5.	Date of last environment statement submitted	September 26,2022 vide letter no AEL/SPCB/BE-03/2022-04/63								

PART - B

Water & Raw material Consumption 1: Total Water Consumption (m³/d)										
Industrial Consumption (Inside Works as Makeup water)	13278	11762								
Domestic Consumption (Inside Works as Drinking water)	90	90								

2: Water Consumption per unit of the product (m³/MWh)										
Name of the Products	Process Water Consumption per unit of pro m³/MWh)									
	2021-22	2022-23								
Electricity	2.92	2.79								

		The second secon	w material per unit of (MT/MW)
Name of Raw materials	Name of Products	During the previous Financial Year (2021-22)	During the current Financial Year (2022-23)
Coal	Electricity	0.865	0.875

PART - C

Pollution discharged to Environment per unit of Output (Parameters as specified in the Consent issued)

(i) Works:

Pollutants	Quantity of discharged	f pollutants (mass/day)	pollutants	rations of discharged volume)	% of variation from prescribed standards					
	(Tonne	(Tonnes/day) (mg/l)		g/l)	In % (referring CTO)					
(a) Water	2021-22	2022-23	2021-22	2022-23	2022-23					
TSS										
COD	-									
Ammonia as N	Zoro diocho	rao la maintai	nod and water	ar io boing tro	ated and rayed					
BOD	Zero dischar	rge is maintail	ned, and wate	er is being trea	ated and reused.					
Phenols	-									
Cyanide as CN ⁻										

(b) Air	2021-22	2022-23	2021-22	2022-23	2022-23
	Tons	s/day	mg/	Nm3	In % (referring CTO)
PM	0.5	0.42	21.6	25.3	(-) 49.4%
SO ₂	16.6	13.18	1054	725.6	(+) 20.9
NO2	1.5	1.35	70	57.8	(-) 87.1

As per MoEF&CC notification vide No. G.S.R.682 (E) dtd.05.09.23, SO₂ emission reduction timeline has been extended up to 31st December 2025. Necessary projects are on construction stage.

1. Surface Water Quality

Parameter	Unit	Kisind	a Nalla	Lingra	a Nalla
i didilictei	Oint	U/S	D/S	U/S	D/S
pH Value	-	6.95 - 8.11	6.82 - 8.21	7.66 - 8.21	7.1 - 8.33
Colour	Haze n	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:1.0)	BDL (DL:1.0)
Temperature	Deg C	25 - 31	25 - 33	25 - 29	24 - 25
Total Suspended Solids	mg/l	3.2 - 20.4	2 - 26.8	< 14.8	< 26
Ammoniacal Nitrogen	mg/l	-	-	BDL (DL:0.1)	BDL (DL:0.1)
Arsenic as As	mg/l	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)
BOD, 3days at 27°C	mg/l	BDL (DL:2.0)	< 3.4	BDL (DL:2.0)	< 2.7
Boron as B	mg/l	BDL (DL:0.25)	BDL (DL:0.25)	BDL (DL:0.25)	BDL (DL:0.25)
Cadmium as Cd	mg/l	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)
Calcium as Ca	mg/l	40 - 110.88	11.88 - 54.88	31.68 - 48	28 - 102.96
Chlorides as Cl	mg/l	24.74 - 89.97	14.7 - 146.4	19.59 - 49.98	14.11 - 119.96
COD	mg/l	7.2 - 16.7	6.98 - 15.4	6.85 - 12	7.2 - 16
Copper (as Cu)	mg/l	BDL (DL:0.02)	BDL (DL:0.02)	BDL (DL:0.02)	BDL (DL:0.02)

Cyanide as CN	mg/l	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)
Fluoride as F-	mg/l	0.35 - 4.7	0.22 - 2.4	0.24 - 1.06	0.33 - 2.17
Free Ammonia	mg/l	-	-	BDL(DL:0.1)	BDL(DL:0.1)
Hexa Chromium as Cr ⁺⁶	mg/l	0 - 0.052	< 0.088	< 0.032	BDL (DL:0.01)
Iron as Fe	mg/l	0.09 - 0.89	0.06 - 2.01	0.11 - 0.38	0.08 - 1.58
Lead (as Pb)	mg/l	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)
Manganese (as Mn)	mg/l	BDL (DL:0.02)	BDL (DL:0.02)	BDL (DL:0.02)	BDL (DL:0.02)
Mercury (as Hg)	mg/l	BDL (DL:0.0002)	BDL (DL:0.0002)	BDL (DL:0.0002)	BDL (DL:0.0002)
Nickel (as Ni)	mg/l	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)	BDL (DL:0.01)
Nitrate as N	mg/l	0.52 - 1.02	0.61 - 1.01	0.5 - 0.92	0.62 - 1.45
O&G	mg/l	BDL (DL:1.4)	BDL (DL:1.4)	BDL (DL:1.4)	BDL (DL:1.4)
Phenolic Comp	mg/l	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)
Phosphate as P	mg/l	0.09 - 0.46	0.07 - 0.62	< 0.32	< 0.4
RFC	mg/l	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)	BDL (DL:0.1)
Selenium (as Se)	mg/l	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)
Sulphate mg/l	mg/l	=	=	BDL(DL:0.02	BDL(DL:0.02)
TKN	mg/l	BDL (DL:0.3)	BDL (DL:0.3)	BDL (DL:0.3)	BDL (DL:0.3)
Total Chromium (as Cr)	mg/l	-	-	BDL(DL:0.01	BDL(DL:0.01
Total Nitrogen Content	mg/l	-	- 0.84 - 3.6		1.02 - 5.1
Vanadium (as V)	mg/l	-	-	BDL(DL:0.05	BDL(DL:0.05)
Zinc (as Zn)	mg/l	BDL (DL:0.02)	BDL (DL:0.02)	BDL (DL:0.02)	BDL (DL:0.02)

NB: U/S: Upstream; D/S: Downstream; BDL: Below Detection Limit; DL: Detection Limit

2. ETP Treated Water Quality

Parameter	UOM	ETP-1			
rarameter	CON	Min	Max	Avg	
рН	-	7.3	8.3	7.8	
Total Suspended Solid	mg/l	5.4	65.0	39.0	
Oil & Grease	mg/l	<5	<5	<5	
Chemical Oxygen Demand (COD)	mg/l	20.0	80.0	39.4	
Biochemical Oxygen Demand (BOD)(27 ° C for 3 days)	mg/l	4.3	8.8	6.5	
Iron as Fe	mg/l	0.1	0.5	0.2	

3. Sewage Treatment Plant -Treated outlet quality

LIOM		AEL STP		Colony STP			
UCIVI	Min	Max	Avg	Min	Max	Avg	
-	7.2	8.0	7.6	7.0	8.3	7.5	
mg/l	17.0	58.0	42.6	22.0	74.0	39.6	
mg/l	10.0	24.0	16.5	7.2	22.0	15.0	
	mg/l	- 7.2 mg/l 17.0	Min Max - 7.2 8.0 mg/l 17.0 58.0	Min Max Avg - 7.2 8.0 7.6 mg/l 17.0 58.0 42.6	Min Max Avg Min - 7.2 8.0 7.6 7.0 mg/l 17.0 58.0 42.6 22.0	Min Max Avg Min Max - 7.2 8.0 7.6 7.0 8.3 mg/I 17.0 58.0 42.6 22.0 74.0	

4. Ambient Air Quality

Parameters	UoM Norm		CAAQMS-2		CAAQMS-3			CAAQMS-4			
raiailleteis	COM	Norm	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
PM10	μg/m³	100	37.4	211.0	126.3	27.1	143.4	74.3	58.1	192.8	102.6
PM2.5	µg/m³	60	12.0	87.6	49.8	8.5	58.7	31.1	21.0	78.9	43.9
SO2	µg/m³	80	11.4	29.1	17.8	9.2	25.7	12.8	5.6	10.1	6.9
Nox	µg/m³	80	9.2	12.7	10.0	16.9	23.7	18.7	8.9	24.6	20.5
СО	mg/m³	2	0.3	0.9	0.64	0.3	0.9	0.42	0.2	0.6	0.36

Parameters	UoM	Nor	C	AAQMS	-5	С	AAQMS	S-6	С	AAQMS	S-7
		m	Min	Max	Av g	Min	Max	Avg	Min	Max	Avg
PM10	μg/m³	100	31.0	153.0	84.4	55.9	207.5	122.0	59.8	258.7	129.4
PM2.5	µg/m³	60	14.9	118.4	50.8	21.8	106.8	45.7	23.0	102.8	52.1
SO2	μg/m³	80	7.6	22.2	12.7	5.7	32.5	16.5	8.2	24.1	15.8
Nox	μg/m³	80	6.4	24.9	17.5	12.0	29.2	20.0	22.7	33.1	31.0
СО	mg/m	2	0.4	1.1	0.61	0.4	0.9	0.66	1.1	1.2	1.16

CAAQMS 2: Near AEL Boundary; CAAQMS 3: Near CRM; CAAQMS; 4: Near Water Complex; CAAQMS 5: Near Coke Oven 2; CAAQMS 6: Near Wagon Tippler; CAAQMS 7: Near Material Gate

Values are derived from 24 hourly average data except CO values are derived from 8 hourly average data.

PART - D

Hazardous Wastes (As specified under The Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016)			
Hazardous waste	vaste Total Quantity (MT)		
	During the previous Financial Year	During the current Financial Year	
	(2021-22)	(2022-23)	
(a) From Process			
Used Oil	2.7	20.7	
Waste residue containing oil	0.12	0.012	
Insulation Material	7.6	19.03 T	
Discarded Container Barrel/Liners contaminated with Hazardous waste chemicals	394 Nos.	456 Nos.	
(b) From Pollution Control Facilities:	NIL	1	

PART – E

Solid Wastes

Total Quantity Generated

	Total Quantity Generated (MT)		
Name of the Waste	During the previous Financial Year (2021-22)	During the current Financial Year (2022-23)	
(a) From Process			
Bottom Ash	199352	151886	
(b) From Pollution Control Facilities		- Companies de la companie de la com	
Fly Ash	465154	422061	

(c) (1). Quantity Recycled/Reutilized within the Unit

	Total Quantity Recycled/Reutilized within the Unit (MT)		
Name of the Waste	During the previous Financial Year (2021-22)	During the current Financial Year (2022-23)	
Ash (internal and external brick	73413	91138	
manufacturing unit)	70410	01100	

(c) (2). Quantity Sold

	Total Quantity Sold (MT)		
Name of the Waste	During the previous Financial Year (2021-22)	During the current Financial Year (2022-23)	
Fly Ash (Cement Manufacturing unit)	65306	79628	

(c) (3). Total Quantity Disposed/Stored

Name of the Wests	Total Quantity (MT)		
Name of the Waste	2021-22	2022-23	
Ash (Used for quarry filling and low lying area reclamation)	470242	192784	
2. Ash (Used for road making)	55545	207245	
Stored in interim ash pond	-	3152	

PART - F

Chemical Composition of majority of waste as produced in process of Angul Energy Ltd. operation is given below:

Name of the Wastes	Che	mical Co	ompositi	on (%)	Disposal Method
Fly Ash	SiO ₂	55.30	Na ₂ O	0.07	- Cumply to coment plant
	Al ₂ O ₃	28.93	K ₂ O	0.28	• Supply to cement plant and to bricks
No.	Fe ₂ O ₃	3.70	Cr ₂ O ₃	0.02	100184 (A1448) 3044 (598/A4484-34548)
	TiO ₂	1.25	NiO	0.01	manufacturing unit free of cost on door delivery
	MnO_2	0.05	CuO	0.01	model.
	CaO	0.02	ZnO	0.016	• Supply to NH
	MgO	0.10	BaO	0.061	construction.
	P ₂ O ₅	0.04	S0 ₃	0.10	A SOLVEN ST. CHARLES AND A CHARLES OF CONTRACTORS
	CI-	0.50	Lol	3.00	Sec. 10.0 Sec. 1
	F	4.8		×1	quarry.
Bottom Ash	SiO ₂	55.51	Na ₂ O	0.07	v
	Al ₂ O ₃	16.30	K ₂ O	0.25	
	Fe ₂ O ₃	11.84	Cr ₂ O ₃	0.01	Supply to cement plant.
	TiO ₂	0.80	NiO	0.01	• Supply to Supply to NH
	MnO_2	0.23	CuO	0.01	construction.
	CaO	0.40	ZnO	0.01	• Reclamation of stone
	MgO	1.37	BaO	0.01	5 1 2 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5
	P ₂ O ₅	0.17	S ₀ ₃	0.12	quarry.
	CI-	6.05	Lol	1.55	
No.	F	1.76			

PART - G

SI.No	Pollution abatement measures taken in 2022-23.	Impact of pollution control measures on conservation of natural resources and cost of production.	
1	LED Lights	2256 nos. LED lights installed to reduce carbon footprint.	
2	Installation of CCTV	Installed CCTV camera for continuous monitoring of stack emissions.	
3	Green Belt Development	Greenbelt has been developed in 33.94% of plant area (including outside area).	
4 Dust Suppression		High Frequency Transformer Rectifier (HFTR) and Micropulse installed to further reduce stack emissions	
		Pneumatic conveying of ash from ESPs to silos to reduce fugitive emissions	
		All conveyors and junction houses are fully covered.	
		All internal roads made pucca and regular cleaning of roads with sweeping machine.	
5	Analyzer Installed	Installed Continuous Emission Monitoring System (CEMS), Continuous Effluent Quality Monitoring System (CEQMS) and Continuous Ambient Air Quality Monitoring System (CAAQMS) for continuous monitoring of stack emissions and effluent quality.	

Description	Expenditure in crores during 2022-23 (in Rs. Crores)	
Air Pollution Control	9.7	
Water Pollution Control	2.6	
Solid Waste Management	19.1	
Hazardous Waste Management	0.09	
Total	31.49	

PART - H

Additional measures/investment proposals for environmental protection including abatement of pollution, and prevention of pollution.

- Upgradation of the existing pollution control equipment to further bring down particulate matter levels.
- Improvement in water recycling facility for reducing the specific water consumption.
- New pollution control equipment is with more stringent design emission value.
- Installation of more IP cameras and Mercury analyzer.
- Installation of roof Rainwater harvesting Project.
- Installation of roof top solar panel for harnessing 50 kWp solar power.
- Installation of De-SOx project to limit the SO2 level <600 mg/Nm3.
- Installation of decanter to reduce the freshwater consumption by 800 m3/day.
- Installation of additional COG/Natural gas based burner along with the existing coal fired burner to facilitate the simultaneous dual firing of by product COG along with coal to reduce PM emission, ash generation and other environmental parameters.

PART - I

Any other undertaken project for improving the quality of environment:

- Installed 05 Nos. of portable bag filter at conveyor line to minimize fugitive dust.
- Installed industrial vacuum cleaner (IVC) at Junction house and material transfer point.
- Installed GPS based IT system to track the movement of fly ash trucks on real time basis including its loading and unloading geo fenced.
- Installed High Frequency Transformer Rectifier (HFTR) in 1st field of ESP to further improve the performance of ESP and to further control particulate matter emissions.

