

Regd Post with A/D

Ref.No.: MGM/P&E/1243/18

Date: 28/09/2018

The Member Secretary, State Pollution Control Board, Orissa, A/118, Nilakantha Nagar, Bhubaneswar

. Sub : Submission of Annual Environment Statement (FORM-V) for Malda Manganese Mine, M/s TATA Steel Ltd. for the year 2017-18.

Dear Sir,

We are enclosing herewith Annual Environment Statement in Form-V for Malda Manganese Mine, M/s TATA Steel Ltd. for the year ending 31st March'2018.

This is for your kind perusal.

Thanking you,

Yours faithfully,

F: TATA STEEL LTD.

Agent &

Head, Manganese Gr. of Mines Ferro Alloys & Minerals Division,

Ioda.

Encl: as above.

Copy to:

 The Regional Officer, State pollution Control Board, Sector 5(Inside Town Engg. Campus), Rourkela

(2) Central Pollution Control Board Southernd Conclave, Block 502, 5th & 6th Floors 1582 Rajdanga Main Road Kolkata - 700 107 (W. B.)

ENVIRONMENTAL STATEMENT

2017-18

UNDER RULE 14 OF ENVIRONMENT (PROTECTION)
RULES, 1986

In

FORM - V

MALDA MANGANESE MINES TATA STEEL LIMITED

SEPTEMBER 2018

Environmental Statement: Malda Manganese Mines - 2017-18

FORM V

[See Rule 14 of Environment (Protection) Rules, 1986]

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR ENDING THE 31ST MARCH 2018

PART - A

(i) Name and Address of the : MALDA MANGANESE MINE Owner / occupier of the industry operation or process.

Nominated Owner :-Mr. T.V.Narendran

Managing Director, M/s TATA Steel

Jamshedpur, Dist- East Singhbhum

Iharkhand - 831 001

Agent :-Mr. S. N. Jha,

Head(Manganese Group of Mines),

Joda, FA & MD, TATA Steel P.O.: Bichhakundi, Via: Joda Dist: Keonjhar, Orissa - 758 034

(ii) Industry Category

: Opencast Mining

(iii) Production Capacity - Units : 550000 TPA (Manganese Ore)

(iv) Year of Establishment

: 1935

(v) Date of the last environmental: 27th Sept'2017

statement submitted

(Vide Letter No. MGM/P&E/668/17)

PART - B

Water and Raw Material Consumption

(1) Water Consumption m3/day

Process Cooling

: Nil

Domestic : 53.03 m3/day (Avg. during 2017-18)

Name of the Products	Process water consump	
	Out During the previous	During the current
	Financial year	Financial year
	(1)	(2)
(1) Manganese Ore	Nil	Nil

Remarks: Manganese Ore is produced by semi mechanized Mining method, which does not involve beneficiation and thus precludes the consumption of water.

(2) Raw material consumption

Name of the	Name of	Consumption of ra	aw materials per unit
raw materials	the product	During the previous Financial year	During the current Financial year
Manganese	Manganese	Year - 2016-17	Year - 2017-18
Ore	Ore	Production :-	Production :-
		NIL	NIL
		Despatch :-	Despatch :-
		NIL	NIL

Remarks: Mining operation has stopped since Feb'2011 due to want of forest clearance.

PART - C

Pollution discharged to environment / unit of output

Pollution	Quantity of pollutants discharged (mass/day)	Concentrations of Pollutants in discharges (mass/volume)	Percentage of variation from prescribed standards with
•			reasons
(a) Water	removal of over	nganese Ore productio burden, breaking and then transportation to	sizing of ore t

	not require consumption of water. Thus, there is no process discharge from the mine.
	The six month average surface water quality data is enclosed as Annexure – I . It shows that the concentrations of the pollutants are well within the permissible standards.
(b) Air	Since this is an open cast Mine, the dust generation is mainly due to the movement of vehicles in the haul roads, drilling activities etc, which is fugitive in nature and cannot be quantified. The fugitive dust is allayed by sprinkling of water by mobile tanker and development of green barrier by plantation around the residential area.
	The monthly average ambient air quality data is enclosed as Annexure - II. It shows that the concentrations of the pollutants are well within the permissible standards.

PART – D

Hazardous Wastes

[As specified under the Hazardous wastes (Management & Handling) Rules,

1989]

Hazardous	Wastes	Total Q	uantity
		During the previous Financial year	During the current Financial year
		Year - 2016-17	Year - 2017-18
(i) From Proce	ess		
Waste Oil	(in Ltrs.)	0	0
Used Oil	(in Ltrs.)	0	0
Cotton Was	ste (in Kgs)	Nil	Nil
Duster	(in Nos.)	Nil	Nil
Filters	(in Nos.)	Nil	Nil
(ii) From pollut	tion control	Nil	Nil
facilities			

Remarks: Mining operation has stopped since Feb'2011 due to want of forest clearance.

PART - E

Solid Wastes

	Total Q	uantity
	During the previous Financial year	During the current Financial year
	Year - 2016-17	Year - 2017-18
(a) From Process (Overburden rejects)	Nil	Nil
(b) From pollution control facilities	Nil	Nil
(c)		
(1) Quantity recycled or re-utilized within the unit	Nil	Nil
(2)Sold	Nil	Nil
(3) Disposal	Nil	Nil

Mining operation has stopped since Feb'2011 due to want of forest clearance.

PART - F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

 Characterization of Hazardous Waste: - The composition of hazardous wastes like Waste Oil & used oil are Hydrocarbons, lead and used acids. The composition of the solid wastes (Overburden and rejects) contains lateritic morrum, shale and quartzite.

Disposal Practice:-

- SOLID WASTES -The overburden is systematically and scientifically dumped on a geologically barren area and the same will be reclaimed by plantation after being declared inactive.
- WASTE OIL -The waste oil generated at various sources is collected in leak proof barrels and then is kept on an impervious floor with oil catch pit. It is also ensured that the caps of the barrels remain intact and horizontal. The storage area is properly fenced and caution board displayed. During transfer of waste oil to barrels, a trough is placed underneath to prevent land contamination due to oil spillage. Then at a fixed interval, these barrels are returned to Ferro Manganese Plant Stores for final disposal through auction to the authorized party.

- USED COTTON WASTES The used cotton wastes generated at various locations are kept in designated barrels and at a fixed interval, these wastes are handed over to the Shift in-charge of the Furnace Section of FAP, Joda for incinerating in the Electric Arc Furnace at a temperature of more than 1100 degree C.
- Provision of impervious pit for collection of oily waste in the workshop premises in addition to the existing practice of collection at specified barrels.

PART - G

Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production.

- Water spraying on haul Roads and Mine Pits is done regularly to suppress the dust.
- All the haul roads in the mining area are made up of morrum & compacted. Regular repair is being done by dozer & grader after spreading the layer of sweat morrum over it.
- Wet drilling has been implemented in all drills. Controlled blasting pattern is being followed.
- 10200 nos. of saplings of various forestry species were planted covering an area of 01 hectare within the leasehold areas of Malda Mn. Mine during the year 2017-18
- During the year 2017-18 an amount of Rs. 11,10,284 /- was incurred towards environmental management including Environmental Monitoring, Plantation activities and construction of toe-wall, check dams and garland drains.
- In addition, Tata Steel Rural Development Society also undertakes the peripheral development activities with a large magnitude.

PART - H

Additional measures / investment proposal for environmental protection, abatement of pollution, prevention of pollution.

- a) Garland drains and toe wall around the OB dumping has been provided to check and channelize surface run-off.
- Plantation of forestry species planted over the inactive waste dump slopes to stabilize the dump slope and arrest the airborne dust.

PART - I

Any other particulars for improving the quality of environment.

- With compliance to conditions of Environment Clearance obtained from MoEF, the following monitoring is being done at regular interval.
 - Ground Water Level at nearby bore wells
 - Trace metal in dust fall
 - Ground water quality at lower level
 - Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500.
- Top soils generated during excavation are utilized immediately for nursery development and dump slope plantation.
- 3. Measures taken to control Air Pollution :-
 - · Water sprinkling on the haul road,
 - · Provision of dust masks to the workmen.
 - · Adoption of wet drilling arrangement in the drill machines and
- 4. Measures taken to control Water Pollution :-
 - Construction of toe wall and garland drain along the dump slope to prevent surface run-off during monsoon.
 - Construction of soak pits for discharge of sanitary sewage at residential colony.
- 5. Measures taken to control Noise & Ground Vibration :-
 - Thick plantation has been developed around the mines to provide a canopy cover
 - Implementation of advance blasting technique(NONEL) to reduce the blast induced ground vibration and
 - Workmen are provided with ear-muff while working near heavy earth moving machineries.
- 6. Measures taken to control Land Degradation:-
 - · Afforestation around the non-active dump for stabilization

- 7. Surveillance of Occupational Health: Periodical Medical Examination of employees (departmental & contractual) is conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood haematology, blood pressure, detailed cardiovascular assessment, neurological examination etc. All chest radiographs are being classified for detection of pneumoconiosis, diagnosis and documentation made in accordance to ILO classifications. During the calendar year 2017-18, total 103 numbers of contractual employees have undergone Periodical Medical Examination (PME). There are no findings of pneumoconiosis and manganese poisoning which is classified as occupational disease.
- 8. The mine is certified with ISO-14001 (Environment Management System).

Agent,

Malda Mn.Mine.

M/s.TATA STEEL LTD.

Amiltona Deley

			April'17	May'17	April'17 May'17 June'17 July:17	July 17	Aug'17	Sept'17
Parameters	Unit	Standard	1st Report	1st Report	1st Report	1st Report	1st Report	1st Report
Dissolved Oxygen (minimum)	1/But	+	5.4	4.8	5.3	6.4	6.1	5.9
BOD (3) days at 27°C (max)	l/gm	m	< 1.8	<1.8	< 1.8	< 1.8	<1.8	< 1.8
Total Coli form	MPN/ 100 ml	2000	150	220	270	,220	470	510
pH Value		0.6-0.9	7.32	7.29	7.22	7.22	7.16	7.20
Colour (max)	Hazen	300	U	15	9	16	14	10
Total Dissolved Solids	I/Bm	1500	129.0	134.0	127.0	114.0	110.0	116.0
Copper as Cu (max)	1/8m	1.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Iron as Fe (max)	1/8m	0.5	0.48	0.42	0.48	0.55	0.42	0.44
Chloride (max)	1/Sm	909	29.0	28.0	24.0	17.0	19.0	20.0
Sulphates (SO ₄) (max)	1/Bm	400	5.3	5.1	5.2	3.9	4.1	3.7
Nitrate as NO ₃ (max)	1/Bm	50	2.1	1.6	1.8	1.6	1.5	1.4
Fluoride as F (max)	ng/l	1.5	0.013	0.015	0.014	0.012	0.013	0.011
Phenolic Compounds as C ₆ H ₅ OH (max)	ng/l	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	40,001
Cadmium as Cd (max)	Mg/l	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium as Se (max)	I/Bin	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic as As	I/Bm	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as CN (max)	ng/l	0.05	ND	ND	NO	ON	ON	ON
Lead as Pb(max)	1/800	0.1	<0.01	40.01	<0,01	<0.01	<0.01	<0.01
Zinc as Zn(max)	1/8m	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexa Chromium as Cr +6	mg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionic Detergents (max)	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
		*	Oct'17	Nov'17	Dec'17	Jan'18	Feb'18	Mar'18
Dissolved Oxygen (minimum)	I/Sm	4	6.1	5.7	5,8	5.5	5.2	4.9
BOD (3) days at 27°C (max)	1/8m	m	< 1.8	< 1.8	<1.8	<1.8	< 1.8	< 1.8
Total Coll form	MPN/100 ml	2000	370	370	270	350	370	270
pH Value	1	0.6-0.9	7.24	7.24	7.26	7.28	7.32	7.4
Colour (max)	Hazen	300	4	1	C	J	CL	ฮ
Total Dissolved Solids	mg/l	1500	109.0	120.0	125.0	125.0	137.0	133
Copper as Cu (max)	l/8m	1.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.005
fron as Fe (max)	f/gm	9.0	0.45	0.42	0.44	0.49	0.48	0.47
Chloride (max)	ng/l	009	18.0	21.0	24.0	25.0	28.0	30
Sulphates (SO-) (max)	mg/l	400	3.6	4.3	4.6	4.8	4.9	4.6
Nitrate as NO ₂ (max)	1/8m	50	1.3	1.7	1.6	1.8	1.8	1.68
Fluoride as F (max)	1/8m	1.5	0.013	0.012	0.011	0.012	0.02	0.015
Phenolic Compounds as CeH5OH (max)	f/8m	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium as Cd (max)	L/Bm	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium as Se (max)	l/Bm	0.05	<0.001	<0.001	<0.001	<0.001	40,001	<0.001
Arsenic as As	ng/l	0.2	<0.001	<0.001	<0.001	<0.001	40,001	<0.001
Cyanide as CN (max)	1/8m	0.05	ON	ON	QN	ON	ON	QN
Lead as Pb[max]	mg/l	0.1	<0.01	<0.01	<0.01	10.05	<0.01	<0.01
Zinc as Zn(max)	mg/]	15	<0.05	90.00	<0.05	<0.05	<0.05	50.0>
Hexa Chromium as Cr+6	mg/1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
A Committee of the Comm	Done 1	1.0	<0.2	<0.2	<0.2	<0.2	c03	<0.5

Parameters	11.11		April'17	May'17	June'17	July-17	Aug'17	Sept 17
	ONIC	Standard	1ST Report	1st keport	1st Keport	1st Report	1st Keport	1St Report
Dissolved Oxygen (minimum)	1/811	*	5.6	5.2	5.8	9'9	5.9	5.5
BOD (3) days at 27°C (max)	ng/l	m	<1.8	<1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Colt form	MPN/ 100 ml	2000	170	270	320	350	450	870
pH Value		0.6-0.9	7.3	7.33	7.26	7.20	7.22	7.18
Colour (max)	Hazen	300	CL	ū	80	18	16	11
Total Dissolved Solids	1/300	1500	135.0	138.0	130.0	118.0	115.0	124.0
Copper as Cu (max)	ng/l	1.5	<0.05	<0.05	<0.05	<0.05	<0.05	40.05
Iron as Fe (max)	1/8m	0.5	0.56	0.49	0.56	09'0	0.45	0.48
Chloride (max)	1/8m	009	30.0	32.0	27.0	18.0	21.0	22.0
Sulphates (504) (max)	1/8m	400	4.8	5.2	5.3	4.1	4.3	4.1
Nitrate as NO ₃ (max)	1/8m	20	1.6	1.8	1.9	1.8	1.7	1.6
Fluoride as F (max)	1/Bio	1.5	0.012	0.014	0.016	0.013	0.014	0.013
Phenolic Compounds as CsHsOH (max)	1/810	0.005	<0.001	<0.001	-00.001	<0.001	<0.001	<0.001
Cadmlum as Cd (max)	l/gm	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium as Se (max)	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenicas As	I/Sm	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as CN (max)	1/Bio	0.05	ND	QN	ON	ON	ON	QN
Lead as Pb(max)	1/800	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc as Zn[max]	ng/l	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexa Chromium as Cr 16	1/800	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionic Detergents (max)	1/8m	1.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parameters			Oct'17	Nov'17	Dec'17	Jan'18	Feb'18	Mar'18
Dissolved Oxygen (minimum)	1/810	+	6.5	5.9	5.6	5.3	5.7	5.2
BOD (3) days at 27tC (max)	I/Sm	63	<1.8	<1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Coli form	MPN/100 ml	2000	410	410	310	310	310	170
pH Value		0.6-0.9	7,22	7.22	7.28	7.24	7.36	7.36
Colour (max)	Hazen	300	4	1	5	U	C.	C
Total Dissolved Solids	1/8m	1500	134.0	118.0	126.0	131.0	136.0	138.0
Copper as Cu (max)	1/8m	1.5	<0.05	<0.05	<0.05	40.05	<0.05	<0.05
Iron as Fe (max)	l/Bm	0.5	0.46	0.45	0.46	0.51	0.45	0.46
Chloride (max)	l/Bm	009	19.0	24.0	25.0	28.0	28.0	32.0
Sulphates (504) [max]	l/Bul	400	3.8	4.5	4.8	4.9	4.7	4.9
Nitrate as NOs (max)	l/8m	20	1.5	7.6	1.7	1.9	1.7	1.78
Fluoride as F (max)	l/Bu	1.5	0,015	0.014	0.012	0.013	0.022	0.018
Phenolic Compounds as C ₅ H ₂ OH (max)	l/Bui	0.005	<0.001	<0.001	-00.001	<0.001	-00.001	<0.001
Cadmium as Cd (max)	1/But	0.01	<0.001	<0.001	-00.001	<0.001	<0.001	<0.001
Selenium as Se (max)	ng/l	0.03	<0.001	<0.001	-00.001	<0.001	<0.001	<0.001
Arsenic as As	l/Bui.	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as CN (max)	l/Bui	0.05	ND	ON	QN	QN	ON.	Q.
Lead as Pb(max)	l/Bul	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc as Zn(max)	l/Bul	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexa Chromium as Cr +4	l/Bu	0.03	<0.05	<0.05	<0.05	<0.05	<0.05	90.00
Anionic Detergents (max)	L/Sul	1.0	<0.2	<0.2	<0.2	40.2	2000	000

		PARAMETERS.	A I I I I I I I I I I I I I I I I I I I	di Guanti	0		PARAMETERS						
	PMm	PM±s	SO2	NOx	0,	00	NHs	Pb	ï.	As	CeHe	BaP	Mn
	(kg/m³)	(hg/m³)	(mg/m²)	(kg/m²)	(ug/m²)	mg/m³)	(hg/m²)	(µg/m²)	(ng/m²)	(ng/m²)	(µg/m³)	(ng/m²)	µg/m³)
Limit as per CPCB notification, New Dolls, J8th Nov, 2009 for Ambient arr quality	901	8	08	90	(80	4	004	-	20	9	s	-	1
Sampling and Analysis done according to	IS 5182(Part -23)-1999	USEPA CFR. 40,Part-50, Appendix-L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)-1974	IS 5182 : Part.10-1999	Air Sampling , 3rd Edn By James P. Lodge (Method- 401)	EPA 10- 3.2	EPA 10- 3.2	APHA 22nd- 3114 C	1S 5182 - Par. 11	IS 5182 Part 12	EPA 10-3.2
April'17	56.6	27.5	4.6	10.9	5.5	0.28	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
May'17	57.6	28.6	4.5	11.0	9.9	0.31	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Jun'17	42.2	19.80	<4.02	<9.2	<4.1	0.19	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
July'17	29.3	11.9	< 4.0	< 9.0	< 4.0	<0.10	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Aug'17	29.9	13.2	< 4.0	< 9.0	< 4.0	<0.10	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sept'17	35.1	16.7	< 4.0	<9.2	< 4.0	<0.12	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct'17	45.6	22.3	<4.2	<10.4	<4.0	0.18	<20.0	<0.001	<0.01	<0.001	100.00	<0.002	<0.001
Nov'17	57.9	28.9	<4.5	12.4	<4.8	0.28	<21.1	<0.001	10.0>	<0.001	<0.001	<0.002	<0.001
Dec'17	73.6	38.3	5.4	15.4	7.8	0.38	27.9	<0.001	<0.01	<0.001	40.001	<0.002	0.008
Jan'18	78.6	39.9	5.8	16.1	3.6	0.40	28.4	<0.001	<0.01	<0.001	<0.001	<0.002	0.014
Feb'18	9'0'	35.3	5.2	15.3	9.3	0.42	25.8	<0.001	<0.01	<0.001	<0.001	<0.002	0.009
Mar'18	64.76	32.24	4.41	12.96	6.87	0.35	21.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001

					*		PARAMETERS						
	PMn	PM2.5	SO2	NON	O)	00	NHs	B	ž	As	C ₆ H ₆	BaP	Mn
4	(ug/m²)	(ug/m²) .	(µg/m³)	(ug/m²)	(hg/m²)	mg/m³)	(ug/m³)	. (µg/m²)	(ng/m³)	(ng/m²)	(µg/m³)	(ug/m²)	$\mu g (m^2)$
Limit as per CPCB notification, New Della, 18th Nov, 2009, for Ambient air quality	190	09	8	0.8	98	4	400	-	30	\$	v).		1
Sampling and Analysis done according to	IS 5182(Part -23)-1999	USEPA CPR- 40, Part-50, Appendix-L	IS: 5182 (Part-2)- 2001	IS 5182 (Part-6)- 2006	IS: 5182 (Part- 9)-1974	IS 5182 Part.10- 1999	Air Sampling , 3rd Edn.By, James P. Lodge (Method- 401)	EPA 10- 3.1	EPA IO- 3.2	APBA 22nd- 3114 C	IS 5182 : Part. 11	15 5182.: Par. 12	EPA 10.3.2
April'17	58.6	29.4	4.8	11.1	5.8	0.29	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
May'17	61.2	30.5	4,8	12.0	7.4	0.34	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Jun'17	47.0	22.1	<4.0	<9.5	<4.2	0.22	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
July'17	31.2	13.0	< 4.0	< 9.0	< 4.0	<0.10	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Aug'17	31.2	13.9	<4.0	<9.2	<4.0	<0.11	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Sept'17	36.2	17.4	<4.1	10.0	<4.0	<0.13	<20.0	-<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Oct'17	40.4	18.9	<4.0	69.7	<4.0	0.15	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov'17	52.0	25.4	<4.3	11.3	<4.2	0.25	<20.5	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec'17	0.89	34.5	5.0	14.4	6.5	0.34	24.9	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.0023
Jan'18	73.4	36.9	5.2	15.2	7.7	0.37	25.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.007
Feb'18	64.7	32.8	4.7	14.4	8.2	0.36	22.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.004
Mar'18	61.02	29.64	4.18	11.67	5.43	0.33	<20.0	1000	1007	1000	-0001	C000 0 /	< 0.001