

Regd Post with A/D

Ref.No.: MGM/P&E/1241/18

Date: 28/09/2018

The Member Secretary, State Pollution Control Board, Orissa, A/118, Nilakantha Nagar, Bhubaneswar

. Sub : Submission of Annual Environment Statement (FORM-V) for Bamebari Manganese Mine, M/s TATA Steel Ltd. for the year 2017-18.

Dear Sir,

We are enclosing herewith Annual Environment Statement in Form-V for Bamebari Manganese Mine, M/s TATA Steel Ltd. for the year ending 31st March'2018.

This is for your kind perusal.

Thanking you,

Yours faithfully,

F: TATA STEEL LTD.

Agent &

Head, Manganese Gr. of Mines Ferro Alloys & Minerals Division, Ioda.

Encl: as above.

Copy to: (1) The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Orissa with enclosure.

(2) Central Pollution Control Board Southernd Conclave, Block 502, 5th & 6th Floors 1582 Rajdanga Main Road Kolkata - 700 107 (W. B.)

ENVIRONMENTAL STATEMENT 2017-18

UNDER RULE 14 OF ENVIRONMENT (PROTECTION)
RULES, 1986

In FORM - V

BAMEBARI MANGANESE MINES TATA STEEL LIMITED

SEPTEMBER 2018

Environmental Statement: Bamebari Manganese Mines - 2017-18

FORM V

[See Rule 14 of Environment (Protection) Rules, 1986]

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR ENDING THE 31ST MARCH 2018

PART - A

(i) Name and Address of the Owner / : BAMEBARI MANGANESE MINE occupier of the industry operation or process.

Nominated Owner :-Mr. T.V. Narendran

Managing Director, M/s TATA Steel Ltd. Jamshedpur, Dist- East Singhbhum

Iharkhand - 831 001

Agent :-

Mr. Amit Kumar Dubey,

Head(Manganese Group of Mines), Joda,

FA & MD, TATA Steel

P.O.: Bichhakundi, Via: Joda Dist: Keonjhar, Orissa - 758 034

(ii) Industry Category : Opencast Mining

: 83,000 TPA (Manganese Ore) (iii) Production Capacity - Units

(iv) Year of Establishment : 1938

(v) Date of the last environmental: 27th Sept'2017 statement submitted

(Vide Letter No. MGM/P&E/666/17

Dt.27.09.2017)

PART - B

Water and Raw Material Consumption

(1) Water Consumption m³/day

Process: 23.73 m³/day (Water sprinkling – Avg. during 2017-18)

Cooling : Ni

Domestic : 67.94 m³/day (Avg. during 2017-18)

Name of the Products	Process water consumption	per unit of product output
	During the previous Financial year	During the current Financial year
	(1)	(2)
(1) Manganese Ore	Nil	Nil

Remarks: Manganese Ore is produced by semi mechanized Mining method, which does not involve beneficiation and thus precludes the consumption of water.

(2) Raw material consumption

Name of the	Name of	Consumption of ra	aw materials per unit
raw materials	the product	During the previous Financial year	During the current Financial year
Manganese Ore	Manganese Ore	Year - 2016-17 Production :-	Year - 2017-18 Production :-
		70674.497 MT Despatch :-	31362.223 MT Despatch :-
		82221.370 MT	63032.570 MT

Remarks : Produced Manganese Ore dispatched for captive consumption in Ferro Alloys Plants within India.

PART - C

Pollution discharged to environment / unit of output

Pollution	Quantity of pollutants discharged (mass/day)	Concentrations of Pollutants in discharges (mass/volume)	Percentage of variation from prescribed standards with reasons
(a) Water	The process of Ma	anganese Ore productio	n includes blasting
	size and then trans	rden, breaking and sizin sportation to the custon ter. Thus, there is no pro	

(b) Air	Since this is an open cast Mine, the dust generation is mainly due to the movement of vehicles in the haul roads, drilling activities etc, which is fugitive in nature and cannot be quantified. The fugitive dust is allayed by sprinkling of water by mobile tanker and development of green barrier by plantation around the residential area.
	The monthly average ambient air quality data is enclosed as Annexure – II. It shows that the concentrations of the pollutants are well within the permissible standards.

PART – D

Hazardous Wastes

[As specified under the Hazardous wastes (Management & Handling) Rules, 1989]

Hazardous Wastes	Total Q	uantity
	During the previous Financial year	During the current Financial year
	Year - 2016-17	Year - 2017-18
(i) From Process		
Waste containing Oil	32 Kg	61 Kg
Used Oil (in Ltrs.)	88 Ltrs	415 Ltrs
Cotton Waste (in Kgs)	Nil	Nil
Duster (in Nos.)	Nil	Nil
Filters (in Nos.)	Nil	Níl
(ii) From pollution control facilities	Nil	Nil

PART - E

Solid Wastes

	Total Q	uantity
	During the previous Financial year	During the current Financial year
	Year - 2016-17	Year - 2017-18
(a) From Process (Overburden rejects)	227295 MT	169830.641 MT
(b) From pollution control facilities	Nil	Nil
(c)		
(1) Quantity recycled or re-utilized within the unit	Nil	Nil
(2) Sold	Nil	Nil
(3) Disposal	227295 MT	169830.641 MT

PART - F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

 Characterization of Hazardous Waste: - The composition of hazardous wastes like Waste Oil & used oil are Hydrocarbons, lead and used acids. The composition of the solid wastes (Overburden and rejects) contains lateritic morrum, shale and quartzite.

Disposal Practice:-

- SOLID WASTES -The overburden is systematically and scientifically dumped on a geologically barren area and the same will be reclaimed by plantation after being declared inactive.
- WASTE OIL -The waste oil generated at various sources is collected in leak proof barrels and then is kept on an impervious floor with oil catch pit. It is also ensured that the caps of the barrels remain intact and horizontal. The storage area is properly fenced and caution board displayed. During transfer of waste oil to barrels, a trough is placed underneath in order to prevent land contamination due to oil spillage. Then at a fixed interval, these barrels are returned to Ferro Manganese Plant Stores for final disposal through auction to the authorized party.
- USED COTTON WASTES The used cotton wastes generated at various locations are kept in designated barrels and at a fixed interval, these wastes are handed over to the Shift in-charge of the Furnace Section of FAP, Joda for

- incinerating in the Electric Are Furnace at a temperature of more than 1100 degree C.
- Provision of impervious pit for collection of oily waste in the workshop premises in addition to the existing practice of collection at specified barrels.

PART - G

Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production.

- Water spraying on haul Roads and Mine Pits is done regularly to suppress the dust.
- All the haul roads in the mining area are made up of morrum & compacted. Regular repair is being done by dozer & grader after spreading the layer of sweet morrum over it.
- Wet drilling has been implemented in all drills. Controlled blasting pattern is being followed.
- 8000 nos. of saplings of various forestry species were planted covering an area of 1.200 hectare within the leasehold areas of Bamebari Mn.Mine
- An amount of Rs. 30,67,031/- was incurred towards environmental monitoring job, plantation activities, vetiver plantation, dust suppression and construction of toe-wall, garland drain and check dams as included in environment management cost.
- In addition, Tata Steel Rural Development Society also undertakes the peripheral development activities with a large magnitude.

PART - H

Additional measures / investment proposal for environmental protection, abatement of pollution, prevention of pollution.

- a) Garland drains and toe wall around the OB dumping shall be provided to check and channelize surface run-off.
- Plantation of forestry species shall be planted over the inactive waste dump slopes to arrest the airborne dust.
- Vetiver Plantation has been done in inactive dump slope.
- d) One STP has installed in Bamebari Colony.
- e) Green belt has been developed along colony and mining.

PART - I

Any other particulars for improving the quality of environment.

- With compliance to conditions of Environment Clearance obtained from MoEF, the following monitoring is being done at regular interval.
 - · Ground Water Level at nearby bore wells
 - Trace metal in dust fall
 - Ground water quality at lower level
 - Meteorological monitoring
 - Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500.
- Top soils generated during excavation are utilized immediately for nursery development and dump slope plantation.
- 3. Measures taken to control Air Pollution :-
 - · Water sprinkling on the haul road,
 - · Provision of dust masks to the workmen,
 - Adoption of wet drilling arrangement in the drill machines and
 - Black topped road in the residential colony.
 - Green belt along mining and colony
 - · Native sapling and vetiver plantation in inactive dumps.
- 4. Measures taken to control Water Pollution :-
 - Construction of toe wall and garland drain along the dump slope to prevent surface run-off during monsoon.
 - Construction of soak pits for discharge of sanitary sewage.
 - Provision of oil separation pit for effluents coming out of work shop.
 - Native sapling and vetiver plantation in inactive dumps.
 - STP for domestic effluent in Bamebari colony.
- 5. Measures taken to control Noise & Ground Vibration :-
 - Thick plantation has been developed around the mines and office building to provide a canopy cover
 - Implementation of advance blasting technique(NONEL) to reduce the blast induced ground vibration and
 - Workmen are provided with ear-muff while working near heavy earth moving machineries.
- Measures taken to control Land Degradation:-
 - Afforestation around the non-active dump for stabilization and
 - Reclamation and rehabilitation of mined out area as per approved Scheme of Mining.

- 7. Surveillance of Occupational Health: Periodical Medical Examination of employees (departmental & contractual) are conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood haematology, blood pressure, detailed cardiovascular assessment, neurological examination etc. All chest radiographs are being classified for detection of pneumoconiosis, diagnosis and documentation made in accordance to ILO classifications. During the year 2017-18, total 45 numbers of employees (Contractual -36, Departmental- 9) covered in PME and 59 contractual employees covered in IME. There are no findings of pneumoconiosis and manganese poisoning which is classified as occupational disease.
- 8. The mine is certified with ISO-14001 (Environment Management System).

Manager,

Bamebari Mn.Mine M/s. TATA STEEL LTD.

Parameters			April 17	May'17	June'17	July 17	Aug'17	Sept'17
Control of the Contro	Onit	Standard	1st Report					
Dissolved Oxygen (minimum)	mg/l	+	5.2	5.4	5,8	6.3	5.8	6.1
BOD (3) days at 27°C (max)	mg/l	3	<18	< 1.8	< 1.8	<1.8	<1.8	× 1.8
Total Coli form	MPN/ 100 ml	2000	06	170	270	410	450	510
pH Value		0.6-0.9	7.26	7.22	7.16	7.20	76.4	7.50
Colour (max)	Hazen	300	CL	CT	00	22	18	1.60
Total Dissolved Solids	l/gm	1500	128.0	124.0	120.0	124.0	1160	1000
Copper as Cu (max)	mg/l	1.5	<0.05	<0.05	<0.05	20 US	2007	7000
Iron as Fe (max)	Ug/I	0.5	0.52	0.48	0.53	0.58	0.48	0.40
Chloride (max)	mg/l	009	29.0	31.0	26.0	200	18.0	19.0
Sulphates (SO ₄) (max)	l/Sui	400	5.1	4.9	4.6	4.4	4.1	4.2
Nitrate as NO ₃ (max)	ng/l	50	2.2	1.9	1.8	1.6	1.5	1.4
Fluoride as F (max)	l/Jiui	1.5	0.022	0.021	0.021	0.015	0.012	0.015
Phenolic Compounds as C. HsOH (max)	l/Bur	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium as Cd (max)	1/8m	0.01	<0,001	<0.001	<0.001	<0.001	<0.001	<0.001
Selention as Se (max)	l/Bm	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AUSenic as As	mg/l	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as Ch (max)	I/Sm	0.05	UD	ND	ND	UN	ND	QN
Dead as Polimax)	l/Bm	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Moss Changing as Cart	ng/l	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionia Potentiale Communication	l/gm	0.05	<0.05	<0.05	<0.05.	<0.05	<0.05	<0.05
Amonic Detergents (max)	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Decolored Owners functionary		,	0ct/17	Nov'17	Dec'17	[an'18	Feb'18	Mar'18
BOD (2) Asses of 27th (const.)	mg/1	+	. 88	5.8	5.5	5.2	5.7	5.2
Total Cali form	1/80	2000	< 1.8	< 1.8	< 1.8	<1.8	< 1.8	< 1.8
red Value	MPN/100 mi	2000	410	420	410	210	210	310
Alama (man)		0.6-0.9	7.19	7.24	7.32	7.35	7.39	7.28
Total Discolored Collide	Hazen	300	5	1	CI	CIT	CC	CI
Consequence Conferent	ng/l	1500	114.0	122.0	127.0	134.0	130.0	135.0
Copper as cd (max)	mg/l	1.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nelcotide (mean)	mg/l	0.5	0.46	0.46	0.48	0.50	0.46	0.42
Colorado (CO.) (max)	mg/.	009	22.0	24.0	23.0	26.0	27.0	31.0
Nitrate of NO. Guant	mg/l	400	4.1	4.5	4.1	4.4	4.2	5.1
Blueside on P Control	L/Bul	50	1.5	1.7	1.6	1.8	1.6	1.84
Phoenical Communication Co. Co.	l/Jui	1.5	0.016	0.016	0.018	0.021	0.019	0.022
Codesing Compounds as LetteOH (max)	mg/l	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
cadmium as Cd (max)	UBu.	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
selenium as se (max)	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic as As	m8/1	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as CN (max)	1/8m	0.05	QN	QN	ND	UN	QN	ND
Lead as Po(max)	l/8m	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc as Zn[max]	l/gm	15	<0.05	<0.05	<0.05	<0.05	<0.85	<0.05
Hexa Chromium as Cr **	l/But	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionic Determents (max)	Warner							

Parameters			April'17	May'17	June'17	July-17	Aug'17	Sept'17
	Onit	Standard	1st Report					
Dissolved Oxygen (minimum)	mg/l	4	5.4	5.2	5.7	. 6.5	6.1	6.2
BOD [3] days at 27% (max)	l/8m	m	< 1.8	< 1.8	< 1.8	<1.8	<1.8	< 1.8
Total Coli form	MPN/ 100 ml	2000	150	210	220	350	570	900
pH Value		0.6-0.9	7.29	7.24	7.12	7.18	7.28	7.16
Colour (max)	Hazen	300	D	5	9	20	20	16
Total Dissolved Solids	l/Bul	1500	133.0	130.0	124.0	126.0	114,0	116.0
Copper as Cu (max)	l/gm	1.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Iron as Fe (max)	1/Bor	0.5	0.56	0.46	0.55	970	0.44	0.51
Chloride (max)	1/3/ur	600	32.0	33.0	27.0	22.0	16.0	22.0
Sulphates (SO ₄) (max)	1/But	400	5.6	5.2	4.9	4.8	4.3	4.4
Nitrate as NO ₁ (max)	l/But	20	2.3	2.1	2.0	1.7	1.6	1.5
Fluoride as F (max)	l/Bm	1.5	0.021	0.023	0.023	0.016	0.012	D.014
Phenolic Compounds as CoHsOH (max)	I/8m	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium as Cd (max)	l/8m	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium as Se (max)	UB/U	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic as As	US/U	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as CN (max)	l/Sm	0.05	ND	QN	QN	QN	ND	ND
Lead as Pb(max)	l/gm	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc as Zn[max]	l/gm	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexa Chromium as Cr 15	l/gm	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionic Detergents (max)	l/gm	1.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parameters			0ct.17	Nov'17	Dec'17	Jan'18	Feb'18	Mar'18
Dissolved Oxygen (minimum)	l/But	4	6.1	5.9	5.4	5.6	5.5	5.4
BOD (3) days at 27°C (max)	l/But	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Coll form	MPN/100 ml	2000	450	510	470	220	270	450
ph value	:	0.6-0.9	7.24	7.28	7.36	7.40	7.45	7.22
Colour (max)	Hazen	300	3	1	C)	CT	CI.	C
Total Dissolved Solids	[/But	1500	112.	125.0	129.0	138.0	140.0	138.0
Copper as Cu (max)	[/8iii	1.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Iron as Fe (max)	l/gm	0.5	0.52	0.44	0.48	0.52	0.49	0.45
Chloride (max)	mg/l	009	20.0	26.0	25.0	29.0	32.0	33.0
Sulphates (SO4) [max]	l/Sur	400	4.2	4.4	4.5	5.6	4.9	5.2
Nitrate as NO ₂ (max)	l/du	50	1.4	1.6	1.7	2.1	2.2	1.92
Fluoride as F (max)	l/du	1.5	0.015	0.018	0.017	0.022	0.023	0.024
Phenotic Compounds as C ₆ H ₅ OH (max)	l/Sur	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium as Cd (max)	l/Bur	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Selenium as Se (max)	UBW	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic as As	UBU	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cyanide as CN (max)	Ugu	0.05	QN	QN	ON	GN	ON	UN
Lead as Po(max)	1/8m	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zincas Zu[max]	l/8m	15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Hexa Chromium as Cr -6	1/Sm	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionic Detergents (max)	l/sui	1.0	<0.2	<0.5	502	0.00	0.0	400

							PARAMETERS						
	PM10	PM25	\$OS	NOX	6	.00	NH3	Pb	Z	As	CeHe	BaP	Mn
	(hg/m²)	(hg/m²)	(ug/m³)	(µg/m²)	(ug/m²)	mg/m²)	(ug/m²)	(hg/m²)	(ng/m³)	(ng/m³)	(ug/m²)	(ng/m³)	(¿w,8ń
Limit as per CPCB notification, New Delhi, 18th Nov, 2009, for Ambient alt quality	100	3	08	8	180	4	400	-	93	9	vs	-	1
Sampling and Analysis dotte according to	IS: 5182(Purt -23)-1999	USEPA CTR- 40,Part-50, Appendix-L	IS 5182 (Part-2)- 2001	IS: 5182 (Part- 5)- 2006	IS: 5182 (Part- 9)-1974	15 5182 ; Part.10-1999	Air Sampling , 3cd Edi. By James P. Lodge (Method- 401)	BA 10-	EPA 10- 3.2	APHA 22nd- 3114 C	IS 5182: Part 11	IS 5182 Part. 12	EPA 10-3.2
April'17	68.9	34.8	6,6	14.2	7.8	0.34	29.4	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
May'17	72.9	36.4	5.3	16.3	10.5	0.38	29.2	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Jun'17	47.8	22.6	<4.0	<10.2	<4.5	0.25	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
July'17	35.4	15.6	<4.1	<9.5	<4.0	0.14	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Aug'17	29.2	12.3	<4.0	<9.16	<4.0	<0.11	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Sept'17	35.1	16.7	<4.0	<9.2	<4.0	0.14	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Oct'17	47.4	22.9	<4.1	<10.02	<4.0	0.22	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Nov'17	52.3	26.2	c4.3	11.6	<4.2	0.30	<20.0	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Dec'17	67.2	33.8	4.6	13.7	9.9	0.36	<22.3	<0.001	<0.01	<0.001	<0.001	<0.002	<0.001
Jan'18	6.6.9	33.4	4.7	14.0	7.1	0.33	23.0	<0.001	<0.01	<0.001	<0.001	<0.002	< 0.001
Feb'18	67.1	33.5	. 4.7	16.7	7.5	0.35	23.8	<0.001	<0.01	<0.001	<0.001	<0.002	< 0.001
Mar'18	67.7	33.9	4.6	14.8	7.4	0.30	23.0	-0000	.004	1000	10000	2000	1000

							PARAMETERS						
	PMin	PMs	SO:	NOX	0;	00	NHs	В	ï	As	CcHs	BaP	Mn
3	(kg/m²)	(hg/m²)	(h8/m³)	(ug/m³)	(hg/m²)	mg/m ² }	(µg/m³)	(µgs/m³)	(ng/m²)	(rg/gn)	(µg/m³)	(ng/m²)	µg/m³)
Limit as per CPCB notification, New Delhi, 18th Nov, 2009 for Ambient air quality	001	8	08	98	081	4	909	-	20	9	vs	-	1
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Par-50, Appendix-L	IS 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)-1974	IS 5182: Part 10- 1999	Air Sampting , 3rd Edn By Jantes P. Lodge (Method- 401)	EPA 10- 3.2	EPA 10- 3.2	APHA 22nd- 3114 C	IS 5182. Part. 11	IS 5162 Part. 12	EPA 10-3.2
April'17	-78.3	41.3	6.3	16.7	8.9	0.41	30.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
May'17	79.8	41.1	9'9	18.2	11.4	0.43	30.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Jun'17	33.2	14.2	<4.0	<9.2	<4.0	0.12	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
July'17	33.2	14.2	<4.0	<9.2	<4.0	0.12	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Aug'17	30.0	12.8	<4.1	<9.1	<4.0	<0.11	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Sept'17	38.5	18.7	<4.2	<9.8	<4.0	0.18	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Oct'17	51.1	25.0	<4.3	<11.2	<4.0	0.26	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	100'0>
Nov*17	56.3	28.3	4.7	13.7	<4.6	0.35	<21.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Dec'17	71.5	36.1	5.4	15.5	7.7	0.42	24.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.005
Jan'18	75.8	38.5	5.3	15.3	8,3	0.40	25.5	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.013
Feb'18	74.4	37.4	5.4	16.0	10.0	0.41	27.1	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.014
Mar'18	73.3	37.0	5.3	16.4	9.5	0.44	25.7	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.015

					0		PARAMETERS	indiana fa	0	Common C.	0.00	(2001)	
	PMin	PM1.5	SO2	NOX	Os	00	NHS	Pb	ï	As	C ₆ H ₆	BaP	Mn
	(kg/m²)	(µg/m²)	(hg/m³)	(µg/m³)	(hg/m²)	mg/m³}	(μg/m²)	(fag/m²)	(ng/m²)	(ng/m³)	(m8/m ₂)	(ng/m²)	(£ui,āx
Lamit as per CPCB netification, New Delhi, 18th New, 2009. for Ambient air quality	901	99	8	08	180	4	400		20	9	en.		1
Sampling and Analysis cone according to	18 5182(Part -23)-1999	USEPA CHR- 40.Purt-50, Appendix-L	(Part-2) 2001	IS: 5142 (Part- 6)- 2006	1S: 5182 (Part- 9)-1974	IS 5182 Part.10- 1999	Air Sampling , 3rd Edn.By James P. Lodge (Method- 401)	EPA 10- 32	EPA IO.	APHA 22nd- 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	EPA 10-3.2
April'17	81.9	44.8	6.7	18.3	10.7	0.43	33.3	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.012
May'17	83.4	44.2	7.3	19.1	12.7	0.46	34.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.014
Jun'17	61.8	30.1	4.6	12.9	<4.6	0.36	<21.4	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.0016
July'17	30.6	13.1	<4.0	<9.1	<4.0	0.12	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Aug'17	32.9	14.3	<4.0	<9.4	<4.0	0.13	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sept'17	41.6	20.1	4.4	11.4	<4.0	0.24	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct'17	56.0	28.1	4.5	12.3	<4.0	0.30	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov'17	61.5	31.1	5.0	14.4	<5.2	0.39	<22.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec'17	74.7	37.7	5.7	16.0	7.9	0.45	26.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.009
Jan'18	80.3	40.8	5.7	16.1	9.2	0.43	27.4	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.014
Feb'18	79.2	41.0	6.0	16.8	11.3	0.44	29.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.018
Mar'18	79.3	40.9	6.0	17.3	10.9	0.47	28.9	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.019