

Shubhanand Mukesh Head Environment Management

EMD/C-23/379/18 September 26th, 2018

The Member Secretary

Jharkhand State Pollution Control Board T.A. Division Building, HEC Campus, Dhurwa

RANCHI - 834004

Subject: Environmental Statement 2017-2018 for Tubes Division, of Tata Steel Limited, Jamshedpur.

Dear Sir,

This has reference to the captioned subject. Please find enclosed the "Environmental Statement" for Tubes Division, of Tata Steel Limited, Jamshedpur for the year 2017-2018 duly filled in the prescribed format is enclosed for your kind consideration.

Thanking you

Yours faithfully,

For Tata Steel Limited

Shubhanand Mukesh

Head, Environment Management

Shubhanand blukech

Encl: As Above

Copy to: Regional Officer, Jharkhand State Pollution Control Board, Jamshedpur – 831 013

TATA STEEL LIMITED

ENVIRONMENTAL STATEMENT FOR THE YEAR 2017- 2018

TUBES DIVISION TATA STEEL LIMITED

ENVIRONMENTAL MANAGEMENT DEPARTMENT TATA STEEL LIMITED JAMSHEDPUR-831001

FORM - V TATA STEEL LIMITED TUBES DIVISION, JAMSHEDPUR

Environment Statement Report for the Year ending 31-03-2018 PART-A

	IA	<u>K.I.</u>	<u> </u>
1)	Name and address of the occupier	• •	Mr. T. V. Narendran Managing Director Tata Steel Limited, Jamshedpur-831001 Jharkhand
II)	Industry Category Primary (SIC Code)		3547 Not available
	Secondary (SIC Code)	•.	Not available
III)	Production capacity	•	216000 MTPA (Standard Tubes) 65000 MTPA (Precision Tubes)
IV)	Year of establishment	:	1954
V)	Date of last environmental statement submitted.		September 14, 2017 vide letter no. EMD/C-23/139/17

PART-B WATER & RAW MATERIAL CONSUMED

i) Water Consumption (m³/day)

Water Consumption	During the previous Financial Year (2016-17)	During the current Financial year (2017-18)
Industrial Consumption (Process & Cooling as Makeup water)	3,14,471 KL (862 m³/day)	2,62,843 KL (720 m³ / day)
Domestic Consumption (as drinking water)	1,19,587 KL (328 m³/day)	1,20,670 KL (331 m³ / day)

Name of the product	Process water consumption per unit of product Output			
	During the previous Financial Year (2016- 17)	During the current Financial year (2017- 18)		
Standard Tubes & Precision Tubes	1.17 KL/Tonnes	0.98 KL/Tonnes		

ii) Raw Material Consumption:

		Consumption of raw material			
Name of Raw Material	Name of the Products	2016-2017	2017-2018 MT/Yr.		
		MT/Yr.			
Hot & Cold Rolled Strips		2,79,395	2,78,578		
Zinc spelter		2,690	2407.926		
Preflux	Standard tubes	154	104.05		
Topflux	Precision tubes	70	28.01		
Sulphuric Acid		493	419.390		
Hydrochloric Acid		80	150		

PART-C

POLLUTION DISCHARGED TO ENVIRONMENT / UNIT OF OUTPUT (PARAMETER AS SPECIFIED IN THE CONSENT ISSUED)

Pollutants	Quant pollu Disch (mass	tants arged	pollu disch	rations of tants arged volume)	Percentage of variation from prescribed (standards with reasons.)	
a) WATER	kg/	day	m	g/L		
	2016- 2017	2017- 2018	<u>2016-</u> 2017	<u>2017-</u> 2018		
TSS	3.23	2.87	18.0	16.19	:=	
Oil & Grease	0.73	0.50	4.1	2.80		
COD	9.37	15.12	52.3	85.42	=	
b) AIR	kg/	day	mg/Nm ³			
	<u>2016-</u> 2017	2017- 2018	2016- 2017	<u>2017-</u> 2018		
PM	25.90	25.3	67.2	28	-	
SO_2	2.31	2.2	6.0	5.2	-	
NO_x	26.35	26.2	68.3	62.3	-	

Ambient Air Quality (2017-18)

			Near Tata	Tubes Galv	anisation	Tube Div	ision Near	Canteen
Parameter	Norm	UoM	Man.	Min.	Average	Max	Min	Average
Particulate Matter, PM ₁₀	100	μg/m³	86.74	161.29	112.38	89.49	131.26	105.21
Particulate Matter, PM _{2.5}	60	μg/m³	54.98	81.59	63.09	54.61	66.60	60.87
Sulphur Dioxide (SO ₂)	80	μg/m³	21.13	34.53	25.01	21.43	34.80	26,95
Nitrogen Dioxide, (NO _x)	80	μg/m³	23.23	41.43	33.91	27.33	49.57	36.21
Carbon Monoxide(CO)	2000	µg/m³	0.24	0,83	0.64	0.34	0.85	0.63
Ammonia (NH ₃)	400	μg/m³	25.00	44.90	37.68	17.33	57.33	37.95
Ozone (O3)	100	μg/m³	22.25	29.75	25,13	22.25	34.50	26.94
Lead (Pb)	1	μg/m³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic (As)	6	ng/m³	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nickel (Ni)	20	ng/m³	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Benzene (C ₆ H ₆)	5	μg/m³	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Environment Statement For 2017-18

Benzo alpha Pyrene (BaP)	1	ng/m³	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	

PART-D

HAZARDOUS WASTES

(As specified under Hazardous and Other Wastes (Management and Transboundary Movement) Amendment Rules, 2016)

Hazardous Wastes	Total Quantity (Tonne/year)		
	2016-17	2017-18	
Zinc by product (Ash, Dross, Dust, Blowing)	995.32 MT	985,68 MT	
Acid Residue (Hydrochloric Acid & Sulphuric Acid)	1442 MT	1247.76 MT	
Pickling / Phosphating sludge	73 MT	106 MT	
Chemical sludge from common industrial ETP	NIL	78 MT	
Used oil & residue containing oil	199.11 MT	100.60 KL	

PART-E

SOLID WASTES

SI. No.	Solid Waste	Total Quantity Generated			
	Sond waste	2016-17	2017-18		
a.	From process Metal finishing wastes Zinc Metal Wastes	18499.18 MT 843.18 MT	15416.08 MT 804.211 MT		
þ.	From Pollution Control facility	Nil	Nil		
c.	Quantity recycled within the unit	Nil	NíL		

PART - F

Characteristics of hazardous as well as solid wastes and their method of disposal:

Hazardous / Solid wastes	Characteristics	Method of disposal
Metal Finishing Wastes	Ferrous	Auctioned to outside parties to reuse and also sent to Steel Works for melting in furnaces.
Zinc Metal Wastes Picking/ Phosphating Bath	Zinc compound Acidic	Auctioned to outside parties to reuse Neutralised and dumped inside the works in the impervious pit
ETP Sludge	Acidic	Neutralised and dumped inside the works in the impervious pit

PART - G

Impact of pollution control
measurers on conservation
of natural resources and
consequently on the cost of
production.

Necessary measures have been taken to increase yield and reduce electricity, water and oil consumption, which reduces the overall cost of production.

A water harvesting point has been created near the Sewage Treatment Plant. The surface drain of the plant is connected to the water harvesting pit which carries the roof water in the rainy season for harvesting. The water harvesting pit has an inlet and an outlet with overflow facility. It is checked and maintained regularly to ensure that the same is in order.

Rain Water Harvesting structure has been installed in old scooter shed area inside plant premises.

PART - H

Additional	investment
proposal	for
environme	ntal protection
including	abatement of
pollution	
1 -	

Online analyzers for effluent to measure pH and TDS have already been commissioned in the outlet of effluent treatment plant. There are only two stacks with adequate height in different operating unit to control particulate matter emission with the help of air pollution control equipment. Both the stacks are being monitored every month by manual measurement. Online emission monitoring system shall be provided to the stacks by next year.

PART - I

· · · · · · · · · · · · · · · · · · ·	The state of the s
Any other particulars for improving	The Tubes Division has successfully
in respect of environmental	passed the ISO 14001: 2004
protection and abatement of	(Environmental Management System)
pollution.	